Example usage for weka.core Instances stringFreeStructure

List of usage examples for weka.core Instances stringFreeStructure

Introduction

In this page you can find the example usage for weka.core Instances stringFreeStructure.

Prototype

public Instances stringFreeStructure() 

Source Link

Document

Create a copy of the structure.

Usage

From source file:com.entopix.maui.main.MauiModelBuilder.java

License:Open Source License

/**
 * Builds the model from the training data
 * @throws MauiFilterException /*from ww w .jav  a  2  s .  c  om*/
 */
public MauiFilter buildModel(List<MauiDocument> documents) throws MauiFilterException {

    log.info("-- Building the model... ");

    FastVector atts = new FastVector(3);
    atts.addElement(new Attribute("filename", (FastVector) null));
    atts.addElement(new Attribute("document", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    mauiFilter = new MauiFilter();
    mauiFilter.setMaxPhraseLength(maxPhraseLength);
    mauiFilter.setMinPhraseLength(minPhraseLength);
    mauiFilter.setMinNumOccur(minNumOccur);
    mauiFilter.setStemmer(stemmer);
    mauiFilter.setDocumentLanguage(documentLanguage);
    mauiFilter.setVocabularyName(vocabularyName);
    mauiFilter.setVocabularyFormat(vocabularyFormat);
    mauiFilter.setStopwords(stopwords);
    mauiFilter.setVocabulary(vocabulary);

    if (classifier != null) {
        mauiFilter.setClassifier(classifier);
    }

    mauiFilter.setInputFormat(data);

    // set features configurations
    mauiFilter.setBasicFeatures(useBasicFeatures);
    mauiFilter.setKeyphrasenessFeature(useKeyphrasenessFeature);
    mauiFilter.setFrequencyFeatures(useFrequencyFeatures);
    mauiFilter.setPositionsFeatures(usePositionsFeatures);
    mauiFilter.setLengthFeature(useLengthFeature);
    mauiFilter.setThesaurusFeatures(useThesaurusFeatures);
    mauiFilter.setWikipediaFeatures(useWikipediaFeatures, wikiFeatures);

    mauiFilter.setClassifier(classifier);

    if (!vocabularyName.equals("none")) {
        loadVocabulary();
        mauiFilter.setVocabulary(vocabulary);
    }

    log.info("-- Adding documents as instances... ");

    for (MauiDocument document : documents) {

        double[] newInst = new double[3];
        newInst[0] = data.attribute(0).addStringValue(document.getFileName());

        // Adding the text and the topics for the document to the instance
        if (document.getTextContent().length() > 0) {
            newInst[1] = data.attribute(1).addStringValue(document.getTextContent());
        } else {
            newInst[1] = Instance.missingValue();
        }

        if (document.getTopicsString().length() > 0) {
            newInst[2] = data.attribute(2).addStringValue(document.getTopicsString());
        } else {
            newInst[2] = Instance.missingValue();
        }

        data.add(new Instance(1.0, newInst));

        mauiFilter.input(data.instance(0));
        data = data.stringFreeStructure();
    }
    log.info("-- Building the model... ");

    mauiFilter.batchFinished();

    while ((mauiFilter.output()) != null) {
    }

    return mauiFilter;

}

From source file:com.github.polarisation.kea.main.KEAKeyphraseExtractor.java

License:Open Source License

/**
 * Builds the model from the files//w w w  .  j  av  a2s  .  c  o  m
 */
public void extractKeyphrases(Hashtable stems) throws Exception {

    Vector stats = new Vector();

    // Check whether there is actually any data
    // = if there any files in the directory
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }
    m_KEAFilter.setNumPhrases(m_numPhrases);
    m_KEAFilter.setVocabulary(m_vocabulary);
    m_KEAFilter.setVocabularyFormat(m_vocabularyFormat);
    m_KEAFilter.setDocumentLanguage(getDocumentLanguage());
    m_KEAFilter.setStemmer(m_Stemmer);
    m_KEAFilter.setStopwords(m_Stopwords);

    if (getVocabulary().equals("none")) {
        m_KEAFilter.m_NODEfeature = false;
    } else {
        m_KEAFilter.loadThesaurus(m_Stemmer, m_Stopwords);
    }

    FastVector atts = new FastVector(3);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    atts.addElement(new Attribute("filename", (String) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    if (m_KEAFilter.m_Dictionary == null) {
        buildGlobalDictionaries(stems);
    }

    System.err.println("-- Extracting Keyphrases... ");
    // Extract keyphrases
    Enumeration elem = stems.keys();
    // Enumeration over all files in the directory (now in the hash):
    while (elem.hasMoreElements()) {
        String str = (String) elem.nextElement();

        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }

            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());

        } catch (Exception e) {
            if (m_debug) {
                System.err.println("Can't read document " + str + ".txt");
            }
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;

            // keyStr = keyphrases in the str.key file
            // Kea assumes, that these keyphrases were assigned by the author
            // and evaluates extracted keyphrases againse these

            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }

            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("No existing keyphrases for stem " + str + ".");
            }
            newInst[1] = Instance.missingValue();
        }

        data.add(new Instance(1.0, newInst));

        m_KEAFilter.input(data.instance(0));

        data = data.stringFreeStructure();
        if (m_debug) {
            System.err.println("-- Document: " + str);
        }
        Instance[] topRankedInstances = new Instance[m_numPhrases];
        Instance inst;

        // Iterating over all extracted keyphrases (inst)
        while ((inst = m_KEAFilter.output()) != null) {

            int index = (int) inst.value(m_KEAFilter.getRankIndex()) - 1;

            if (index < m_numPhrases) {
                topRankedInstances[index] = inst;

            }
        }

        if (m_debug) {
            System.err.println("-- Keyphrases and feature values:");
        }
        FileOutputStream out = null;
        PrintWriter printer = null;
        File key = new File(m_dirName + "/" + str + ".key");
        if (!key.exists()) {
            out = new FileOutputStream(m_dirName + "/" + str + ".key");
            if (!m_encoding.equals("default")) {
                printer = new PrintWriter(new OutputStreamWriter(out, m_encoding));

            } else {
                printer = new PrintWriter(out);
            }
        }
        double numExtracted = 0, numCorrect = 0;

        for (int i = 0; i < m_numPhrases; i++) {
            if (topRankedInstances[i] != null) {
                if (!topRankedInstances[i].isMissing(topRankedInstances[i].numAttributes() - 1)) {
                    numExtracted += 1.0;
                }
                if ((int) topRankedInstances[i].value(topRankedInstances[i].numAttributes() - 1) == 1) {
                    numCorrect += 1.0;
                }
                if (printer != null) {
                    printer.print(topRankedInstances[i].stringValue(m_KEAFilter.getUnstemmedPhraseIndex()));

                    if (m_AdditionalInfo) {
                        printer.print("\t");
                        printer.print(topRankedInstances[i].stringValue(m_KEAFilter.getStemmedPhraseIndex()));
                        printer.print("\t");
                        printer.print(Utils.doubleToString(
                                topRankedInstances[i].value(m_KEAFilter.getProbabilityIndex()), 4));
                    }
                    printer.println();
                }
                if (m_debug) {
                    System.err.println(topRankedInstances[i]);
                }
            }
        }
        if (numExtracted > 0) {
            if (m_debug) {
                System.err.println("-- " + numCorrect + " correct");
            }
            stats.addElement(new Double(numCorrect));
        }
        if (printer != null) {
            printer.flush();
            printer.close();
            out.close();
        }
    }
    double[] st = new double[stats.size()];
    for (int i = 0; i < stats.size(); i++) {
        st[i] = ((Double) stats.elementAt(i)).doubleValue();
    }
    double avg = Utils.mean(st);
    double stdDev = Math.sqrt(Utils.variance(st));

    System.err.println("Avg. number of matching keyphrases compared to existing ones : "
            + Utils.doubleToString(avg, 2) + " +/- " + Utils.doubleToString(stdDev, 2));
    System.err.println("Based on " + stats.size() + " documents");
    // m_KEAFilter.batchFinished();
}

From source file:com.openkm.kea.metadata.SubjectExtractor.java

License:Open Source License

/**
 * extractSuggestedSubjects/*from   ww  w.j  a v a  2  s  .com*/
 * 
 * @param documentText
 * @return
 */
public List<String> extractSuggestedSubjects(String documentText) {

    Date start, stop;

    start = new Date();
    List<String> subjects = new ArrayList<String>();
    // no idea what this is ....
    FastVector atts = new FastVector(3);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    atts.addElement(new Attribute("filename", (String) null));
    Instances unknownDataStructure = new Instances("keyphrase_training_data", atts, 0);

    try {
        // this is the exrtraction process part - not too well understood yet
        // "unkowndatastructure" is called instances in original KEA code
        double[] unknownStructure = new double[2];
        unknownStructure[0] = (double) unknownDataStructure.attribute(0).addStringValue(documentText);
        unknownStructure[1] = Instance.missingValue(); // this part used for existing subjects - we have none
        unknownDataStructure.add(new Instance(1.0, unknownStructure));
        filter.input(unknownDataStructure.instance(0));
        unknownDataStructure.stringFreeStructure(); //??**&%%!!!??

        // this is getting the results out - better understood
        Instance[] rankedSubjects = new Instance[this.subjectNumLimit];
        Instance subject;
        while ((subject = filter.output()) != null) {
            int index = (int) subject.value(filter.getRankIndex()) - 1;
            if (index < subjectNumLimit) {
                rankedSubjects[index] = subject;
            }
        }
        for (int i = 0; i < subjectNumLimit; i++) {
            if (rankedSubjects[i] != null) {
                subjects.add(rankedSubjects[i].stringValue(filter.getUnstemmedPhraseIndex()));
            }
        }

    } catch (Exception e) {
        log.error("problem in subject extraction: ", e);
    } finally {
        stop = new Date();
        long time = (stop.getTime() - start.getTime());
        log.info("Subject extraction completed in " + time + "ms");
    }

    return subjects;
}

From source file:com.openkm.kea.modelcreator.KEAKeyphraseExtractor.java

License:Open Source License

/**
 * Builds the model from the files/*  w ww  .jav a 2s  .co m*/
 */
public void extractKeyphrases(Hashtable<String, Double> stems) throws Exception {
    Vector<Double> stats = new Vector<Double>();

    // Check whether there is actually any data
    // = if there any files in the directory
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }
    m_KEAFilter.setNumPhrases(m_numPhrases);
    m_KEAFilter.setVocabulary(m_vocabulary);
    m_KEAFilter.setVocabularyFormat(m_vocabularyFormat);
    m_KEAFilter.setDocumentLanguage(getDocumentLanguage());
    m_KEAFilter.setStemmer(m_Stemmer);
    m_KEAFilter.setStopwords(m_Stopwords);

    if (getVocabulary().equals("none")) {
        m_KEAFilter.m_NODEfeature = false;
    } else {
        m_KEAFilter.loadThesaurus(m_Stemmer, m_Stopwords);
    }

    FastVector atts = new FastVector(3);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    atts.addElement(new Attribute("filename", (String) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    if (m_KEAFilter.m_Dictionary == null) {
        buildGlobalDictionaries(stems);
    }

    log.info("-- Extracting Keyphrases... ");
    // Extract keyphrases
    Enumeration<String> elem = stems.keys();
    // Enumeration over all files in the directory (now in the hash):
    while (elem.hasMoreElements()) {
        String str = elem.nextElement();

        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }

            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());

        } catch (Exception e) {
            if (m_debug) {
                log.debug("Can't read document " + str + ".txt");
            }
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;

            // keyStr = keyphrases in the str.key file
            // Kea assumes, that these keyphrases were assigned by the
            // author
            // and evaluates extracted keyphrases againse these

            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }

            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                log.debug("No existing keyphrases for stem " + str + ".");
            }
            newInst[1] = Instance.missingValue();
        }

        data.add(new Instance(1.0, newInst));

        m_KEAFilter.input(data.instance(0));

        data = data.stringFreeStructure();
        if (m_debug) {
            log.debug("-- Document: " + str);
        }
        Instance[] topRankedInstances = new Instance[m_numPhrases];
        Instance inst;

        // Iterating over all extracted keyphrases (inst)
        while ((inst = m_KEAFilter.output()) != null) {

            int index = (int) inst.value(m_KEAFilter.getRankIndex()) - 1;

            if (index < m_numPhrases) {
                topRankedInstances[index] = inst;

            }
        }

        if (m_debug) {
            log.debug("-- Keyphrases and feature values:");
        }

        FileOutputStream out = null;
        PrintWriter printer = null;
        File key = new File(m_dirName + "/" + str + ".key");
        if (!key.exists()) {
            out = new FileOutputStream(m_dirName + "/" + str + ".key");
            if (!m_encoding.equals("default")) {
                printer = new PrintWriter(new OutputStreamWriter(out, m_encoding));

            } else {
                printer = new PrintWriter(out);
            }
        }

        double numExtracted = 0, numCorrect = 0;

        for (int i = 0; i < m_numPhrases; i++) {
            if (topRankedInstances[i] != null) {
                // My addition: to exclude low ranking phrases
                double rank = topRankedInstances[i].value(m_KEAFilter.getProbabilityIndex());

                if (rank >= 0.00) {
                    if (!topRankedInstances[i].isMissing(topRankedInstances[i].numAttributes() - 1)) {
                        numExtracted += 1.0;
                    }
                    if ((int) topRankedInstances[i].value(topRankedInstances[i].numAttributes() - 1) == 1) {
                        numCorrect += 1.0;
                    }
                    if (printer != null) {
                        printer.print(topRankedInstances[i].stringValue(m_KEAFilter.getUnstemmedPhraseIndex()));

                        if (m_AdditionalInfo) {
                            printer.print("\t");
                            printer.print(
                                    topRankedInstances[i].stringValue(m_KEAFilter.getStemmedPhraseIndex()));
                            printer.print("\t");
                            printer.print(Utils.doubleToString(
                                    topRankedInstances[i].value(m_KEAFilter.getProbabilityIndex()), 4));
                        }
                        printer.println();
                    }
                    if (m_debug) {
                        log.debug("" + topRankedInstances[i]);
                    }
                }
            }
        }

        if (numExtracted > 0) {
            if (m_debug) {
                log.debug("-- " + numCorrect + " correct");
            }
            stats.addElement(new Double(numCorrect));
        }

        if (printer != null) {
            printer.flush();
            printer.close();
            out.close();
        }
    }

    double[] st = new double[stats.size()];
    for (int i = 0; i < stats.size(); i++) {
        st[i] = ((Double) stats.elementAt(i)).doubleValue();
    }
    double avg = Utils.mean(st);
    double stdDev = Math.sqrt(Utils.variance(st));

    log.info("Avg. number of matching keyphrases compared to existing ones : " + Utils.doubleToString(avg, 2)
            + " +/- " + Utils.doubleToString(stdDev, 2));
    log.info("Based on " + stats.size() + " documents");
    // m_KEAFilter.batchFinished();
}

From source file:com.openkm.kea.modelcreator.KEAModelBuilder.java

License:Open Source License

/**
 * Builds the model from the files//w w  w.j  av  a  2s  .c om
 */
public void buildModel(Hashtable<String, Double> stems, Stopwords stopwords) throws Exception {
    // Check whether there is actually any data
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }

    FastVector atts = new FastVector(2);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    // Build model
    m_KEAFilter = new KEAFilter(stopwords);

    m_KEAFilter.setDebug(m_debug);
    m_KEAFilter.setDisallowInternalPeriods(getDisallowIPeriods());
    m_KEAFilter.setKFused(getUseKFrequency());

    m_KEAFilter.setMaxPhraseLength(getMaxPhraseLength());
    m_KEAFilter.setMinPhraseLength(getMinPhraseLength());
    m_KEAFilter.setMinNumOccur(getMinNumOccur());
    m_KEAFilter.setStemmer(getStemmer());
    m_KEAFilter.setDocumentLanguage(getDocumentLanguage());
    m_KEAFilter.setVocabulary(getVocabulary());
    m_KEAFilter.setVocabularyFormat(getVocabularyFormat());
    m_KEAFilter.setStopwords(getStopwords());
    m_KEAFilter.setCheckForProperNouns(getCheckForProperNouns());
    m_KEAFilter.setInputFormat(data);

    if (getVocabulary().equals("none")) {
        m_KEAFilter.m_NODEfeature = false;
    } else {
        m_KEAFilter.loadThesaurus(getStemmer(), getStopwords());
    }
    m_KEAFilter.setNumFeature();

    log.info("-- Reading the Documents... ");

    Enumeration<String> elem = stems.keys();
    while (elem.hasMoreElements()) {
        String str = elem.nextElement();

        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }
            is.close();
            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());
        } catch (Exception e) {
            log.error("Can't find document for stem " + str + ".");
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }
            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            log.error("Can't find keyphrases for stem " + str + ".");
            newInst[1] = Instance.missingValue();
        }
        data.add(new Instance(1.0, newInst));
        m_KEAFilter.input(data.instance(0));
        data = data.stringFreeStructure();
    }
    m_KEAFilter.batchFinished();

    while ((m_KEAFilter.output()) != null) {
    }
    ;
}

From source file:com.spread.experiment.tempuntilofficialrelease.ClassificationViaClustering108.java

License:Open Source License

/**
 * builds the classifier/*from w w w .j  av a  2s  .c om*/
 * 
 * @param data the training instances
 * @throws Exception if something goes wrong
 */
@Override
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // save original header (needed for clusters to classes output)
    m_OriginalHeader = data.stringFreeStructure();

    // remove class attribute for clusterer
    Instances clusterData = new Instances(data);
    clusterData.setClassIndex(-1);
    clusterData.deleteAttributeAt(data.classIndex());
    m_ClusteringHeader = clusterData.stringFreeStructure();

    if (m_ClusteringHeader.numAttributes() == 0) {
        System.err.println("Data contains only class attribute, defaulting to ZeroR model.");
        m_ZeroR = new ZeroR();
        m_ZeroR.buildClassifier(data);
    } else {
        m_ZeroR = null;

        // build clusterer
        m_ActualClusterer = AbstractClusterer.makeCopy(m_Clusterer);
        m_ActualClusterer.buildClusterer(clusterData);

        if (!getLabelAllClusters()) {

            // determine classes-to-clusters mapping
            ClusterEvaluation eval = new ClusterEvaluation();
            eval.setClusterer(m_ActualClusterer);
            eval.evaluateClusterer(clusterData);
            double[] clusterAssignments = eval.getClusterAssignments();
            int[][] counts = new int[eval.getNumClusters()][m_OriginalHeader.numClasses()];
            int[] clusterTotals = new int[eval.getNumClusters()];
            double[] best = new double[eval.getNumClusters() + 1];
            double[] current = new double[eval.getNumClusters() + 1];
            for (int i = 0; i < data.numInstances(); i++) {
                Instance instance = data.instance(i);
                if (!instance.classIsMissing()) {
                    counts[(int) clusterAssignments[i]][(int) instance.classValue()]++;
                    clusterTotals[(int) clusterAssignments[i]]++;
                }
            }
            best[eval.getNumClusters()] = Double.MAX_VALUE;
            ClusterEvaluation.mapClasses(eval.getNumClusters(), 0, counts, clusterTotals, current, best, 0);
            m_ClustersToClasses = new double[best.length];
            System.arraycopy(best, 0, m_ClustersToClasses, 0, best.length);
        } else {
            m_ClusterClassProbs = new double[m_ActualClusterer.numberOfClusters()][data.numClasses()];
            for (int i = 0; i < data.numInstances(); i++) {
                Instance clusterInstance = clusterData.instance(i);
                Instance originalInstance = data.instance(i);
                if (!originalInstance.classIsMissing()) {
                    double[] probs = m_ActualClusterer.distributionForInstance(clusterInstance);
                    for (int j = 0; j < probs.length; j++) {
                        m_ClusterClassProbs[j][(int) originalInstance.classValue()] += probs[j];
                    }
                }
            }
            for (int i = 0; i < m_ClusterClassProbs.length; i++) {
                Utils.normalize(m_ClusterClassProbs[i]);
            }
        }
    }
}

From source file:core.ClusterEvaluationEX.java

License:Open Source License

public Instances DeleteNoise(Instances data) {
    noise = data.stringFreeStructure();
    for (int i = 0; i < data.numInstances(); i++) {
        if (data.instance(i).value(1) == -1) {
            noise.add(data.instance(i));
            data.delete(i);/*ww w  .  j a v  a  2  s . com*/
            i--;
        }
    }
    return data;
}

From source file:kea.KEAKeyphraseExtractor.java

License:Open Source License

/**
 * Builds the model from the files//from ww w  .j a v  a  2 s.  co  m
 */
public void extractKeyphrases(Hashtable stems) throws Exception {

    Vector stats = new Vector();

    // Check whether there is actually any data
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }

    FastVector atts = new FastVector(2);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    // Extract keyphrases
    Enumeration elem = stems.keys();
    while (elem.hasMoreElements()) {
        String str = (String) elem.nextElement();
        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            Reader is;
            if (!m_encoding.equals("default")) {
                is = new BomStrippingInputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new BomStrippingInputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }
            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("Can't read document " + str + ".txt");
            }
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            Reader is;
            if (!m_encoding.equals("default")) {
                is = new BomStrippingInputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new BomStrippingInputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }
            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("No keyphrases for stem " + str + ".");
            }
            newInst[1] = Instance.missingValue();
        }
        data.add(new Instance(1.0, newInst));
        m_KEAFilter.input(data.instance(0));
        data = data.stringFreeStructure();
        if (m_debug) {
            System.err.println("-- Document: " + str);
        }
        Instance[] topRankedInstances = new Instance[m_numPhrases];
        Instance inst;
        while ((inst = m_KEAFilter.output()) != null) {
            int index = (int) inst.value(m_KEAFilter.getRankIndex()) - 1;
            if (index < m_numPhrases) {
                topRankedInstances[index] = inst;
            }
        }
        if (m_debug) {
            System.err.println("-- Keyphrases and feature values:");
        }
        FileOutputStream out = null;
        PrintWriter printer = null;
        File key = new File(m_dirName + "/" + str + ".key");
        if (!key.exists()) {
            out = new FileOutputStream(m_dirName + "/" + str + ".key");
            if (!m_encoding.equals("default")) {
                printer = new PrintWriter(new OutputStreamWriter(out, m_encoding));
            } else {
                printer = new PrintWriter(out);
            }
        }
        double numExtracted = 0, numCorrect = 0;
        for (int i = 0; i < m_numPhrases; i++) {
            if (topRankedInstances[i] != null) {
                if (!topRankedInstances[i].isMissing(topRankedInstances[i].numAttributes() - 1)) {
                    numExtracted += 1.0;
                }
                if ((int) topRankedInstances[i]
                        .value(topRankedInstances[i].numAttributes() - 1) == topRankedInstances[i]
                                .attribute(topRankedInstances[i].numAttributes() - 1).indexOfValue("True")) {
                    numCorrect += 1.0;
                }
                if (printer != null) {
                    printer.print(topRankedInstances[i].stringValue(m_KEAFilter.getUnstemmedPhraseIndex()));
                    if (m_AdditionalInfo) {
                        printer.print("\t");
                        printer.print(topRankedInstances[i].stringValue(m_KEAFilter.getStemmedPhraseIndex()));
                        printer.print("\t");
                        printer.print(Utils.doubleToString(
                                topRankedInstances[i].value(m_KEAFilter.getProbabilityIndex()), 4));
                    }
                    printer.println();
                }
                if (m_debug) {
                    System.err.println(topRankedInstances[i]);
                }
            }
        }
        if (numExtracted > 0) {
            if (m_debug) {
                System.err.println("-- " + numCorrect + " correct");
            }
            stats.addElement(new Double(numCorrect));
        }
        if (printer != null) {
            printer.flush();
            printer.close();
            out.close();
        }
    }
    double[] st = new double[stats.size()];
    for (int i = 0; i < stats.size(); i++) {
        st[i] = ((Double) stats.elementAt(i)).doubleValue();
    }
    double avg = Utils.mean(st);
    double stdDev = Math.sqrt(Utils.variance(st));
    System.err.println("Avg. number of correct keyphrases: " + Utils.doubleToString(avg, 2) + " +/- "
            + Utils.doubleToString(stdDev, 2));
    System.err.println("Based on " + stats.size() + " documents");
    m_KEAFilter.batchFinished();
}

From source file:kea.KEAModelBuilder.java

License:Open Source License

/**
 * Builds the model from the files/*from www. jav a  2s.co m*/
 */
public void buildModel(Hashtable stems) throws Exception {

    // Check whether there is actually any data
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }

    FastVector atts = new FastVector(2);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    // Build model
    m_KEAFilter = new KEAFilter();
    m_KEAFilter.setDebug(m_debug);
    m_KEAFilter.setDisallowInternalPeriods(getDisallowIPeriods());
    m_KEAFilter.setKFused(getUseKFrequency());
    m_KEAFilter.setMaxPhraseLength(getMaxPhraseLength());
    m_KEAFilter.setMinPhraseLength(getMinPhraseLength());
    m_KEAFilter.setMinNumOccur(getMinNumOccur());
    m_KEAFilter.setInputFormat(data);
    m_KEAFilter.setStemmer(getStemmer());
    m_KEAFilter.setStopwords(getStopwords());
    m_KEAFilter.setCheckForProperNouns(getCheckForProperNouns());
    Enumeration elem = stems.keys();
    while (elem.hasMoreElements()) {
        String str = (String) elem.nextElement();
        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            BufferedReader is;
            if (!m_encoding.equals("default")) {
                is = new BomStrippingInputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new BomStrippingInputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }
            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("Can't find document for stem " + str + ".");
            }
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            BufferedReader is;
            if (!m_encoding.equals("default")) {
                is = new BomStrippingInputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new BomStrippingInputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }
            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("Can't find keyphrases for stem " + str + ".");
            }
            newInst[1] = Instance.missingValue();
        }
        data.add(new Instance(1.0, newInst));
        m_KEAFilter.input(data.instance(0));
        data = data.stringFreeStructure();
    }
    m_KEAFilter.batchFinished();

    // Get rid of instances in filter
    while (m_KEAFilter.output() != null) {
    }
    ;
}

From source file:kea.main.KEAKeyphraseExtractor.java

License:Open Source License

/**
 * Builds the model from the files//w  w w  .  j  a  v  a2  s. co m
 */
public synchronized void extractKeyphrases(Hashtable stems) throws Exception {

    Vector stats = new Vector();

    // Check whether there is actually any data
    // = if there any files in the directory
    if (stems.size() == 0) {
        throw new Exception("Couldn't find any data!");
    }
    this.m_KEAFilter.setNumPhrases(m_numPhrases);
    this.m_KEAFilter.setVocabulary(m_vocabulary);
    this.m_KEAFilter.setVocabularyFormat(m_vocabularyFormat);
    this.m_KEAFilter.setDocumentLanguage(getDocumentLanguage());
    this.m_KEAFilter.setStemmer(m_Stemmer);
    this.m_KEAFilter.setStopwords(m_Stopwords);

    if (getVocabulary().equals("none")) {
        this.m_KEAFilter.m_NODEfeature = false;
    } else {
        // Know thesaurus is loaded in the constructor
        //m_KEAFilter.loadThesaurus(m_Stemmer, m_Stopwords, vocabularyDir, manager);
    }

    FastVector atts = new FastVector(3);
    atts.addElement(new Attribute("doc", (FastVector) null));
    atts.addElement(new Attribute("keyphrases", (FastVector) null));
    atts.addElement(new Attribute("filename", (String) null));
    Instances data = new Instances("keyphrase_training_data", atts, 0);

    if (this.m_KEAFilter.m_Dictionary == null) {
        buildGlobalDictionaries(stems);
    }

    System.out.println("-- Extracting Keyphrases... ");
    // Extract keyphrases
    Enumeration elem = stems.keys();
    // Enumeration over all files in the directory (now in the hash):
    while (elem.hasMoreElements()) {
        String str = (String) elem.nextElement();

        double[] newInst = new double[2];
        try {
            File txt = new File(m_dirName + "/" + str + ".txt");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(txt), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(txt));
            }
            StringBuffer txtStr = new StringBuffer();
            int c;
            while ((c = is.read()) != -1) {
                txtStr.append((char) c);
            }
            is.close();

            newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());

        } catch (Exception e) {
            if (m_debug) {
                System.err.println("Can't read document " + str + ".txt");
            }
            newInst[0] = Instance.missingValue();
        }
        try {
            File key = new File(m_dirName + "/" + str + ".key");
            InputStreamReader is;
            if (!m_encoding.equals("default")) {
                is = new InputStreamReader(new FileInputStream(key), m_encoding);
            } else {
                is = new InputStreamReader(new FileInputStream(key));
            }
            StringBuffer keyStr = new StringBuffer();
            int c;

            // keyStr = keyphrases in the str.key file
            // Kea assumes, that these keyphrases were assigned by the
            // author
            // and evaluates extracted keyphrases againse these

            while ((c = is.read()) != -1) {
                keyStr.append((char) c);
            }

            is.close();

            newInst[1] = (double) data.attribute(1).addStringValue(keyStr.toString());
        } catch (Exception e) {
            if (m_debug) {
                System.err.println("No existing keyphrases for stem " + str + ".");
            }
            newInst[1] = Instance.missingValue();
        }

        data.add(new Instance(1.0, newInst));

        this.m_KEAFilter.input(data.instance(0), vocabulary);

        data = data.stringFreeStructure();
        if (m_debug) {
            System.err.println("-- Document: " + str);
        }
        Instance[] topRankedInstances = new Instance[m_numPhrases];
        Instance inst;

        // Iterating over all extracted keyphrases (inst)
        while ((inst = this.m_KEAFilter.output()) != null) {

            int index = (int) inst.value(this.m_KEAFilter.getRankIndex()) - 1;

            if (index < m_numPhrases) {
                topRankedInstances[index] = inst;
            }
        }

        if (m_debug) {
            System.err.println("-- Keyphrases and feature values:");
        }
        FileOutputStream out = null;
        PrintWriter printer = null;
        File key = new File(m_dirName + "/" + str + ".key");
        if (!key.exists()) {
            out = new FileOutputStream(m_dirName + "/" + str + ".key");
            if (!m_encoding.equals("default")) {
                printer = new PrintWriter(new OutputStreamWriter(out, m_encoding));

            } else {
                printer = new PrintWriter(out);
            }
        }
        double numExtracted = 0, numCorrect = 0;

        for (int i = 0; i < m_numPhrases; i++) {
            if (topRankedInstances[i] != null) {
                if (!topRankedInstances[i].isMissing(topRankedInstances[i].numAttributes() - 1)) {
                    numExtracted += 1.0;
                }
                if ((int) topRankedInstances[i].value(topRankedInstances[i].numAttributes() - 1) == 1) {
                    numCorrect += 1.0;
                }
                if (printer != null) {
                    printer.print(
                            topRankedInstances[i].stringValue(this.m_KEAFilter.getUnstemmedPhraseIndex()));

                    if (m_AdditionalInfo) {
                        printer.print("\t");
                        printer.print(
                                topRankedInstances[i].stringValue(this.m_KEAFilter.getStemmedPhraseIndex()));
                        printer.print("\t");
                        printer.print(Utils.doubleToString(
                                topRankedInstances[i].value(this.m_KEAFilter.getProbabilityIndex()), 4));
                    }
                    printer.println();
                }
                if (m_debug) {
                    System.err.println(topRankedInstances[i]);
                }
            }
        }
        if (numExtracted > 0) {
            if (m_debug) {
                System.err.println("-- " + numCorrect + " correct");
            }
            stats.addElement(new Double(numCorrect));
        }
        if (printer != null) {
            printer.flush();
            printer.close();
            out.close();
        }
    }
    double[] st = new double[stats.size()];
    for (int i = 0; i < stats.size(); i++) {
        st[i] = ((Double) stats.elementAt(i)).doubleValue();
    }
    double avg = Utils.mean(st);
    double stdDev = Math.sqrt(Utils.variance(st));

    System.out.println("Avg. number of matching keyphrases compared to existing ones : "
            + Utils.doubleToString(avg, 2) + " +/- " + Utils.doubleToString(stdDev, 2));
    System.out.println("Based on " + stats.size() + " documents");
    // m_KEAFilter.batchFinished();
}