List of usage examples for weka.core Instances setClassIndex
public void setClassIndex(int classIndex)
From source file:classif.ExperimentsLauncher.java
License:Open Source License
public static Instances[] readTrainAndTest(String name) { File trainFile = new File(datasetsDir + name + "/" + name + "_TRAIN"); if (!new File(trainFile.getAbsolutePath() + ".csv").exists()) { UCR2CSV.run(trainFile, new File(trainFile.getAbsolutePath() + ".csv")); }//from w ww . ja va2 s. co m trainFile = new File(trainFile.getAbsolutePath() + ".csv"); File testFile = new File(datasetsDir + name + "/" + name + "_TEST"); if (!new File(testFile.getAbsolutePath() + ".csv").exists()) { UCR2CSV.run(testFile, new File(testFile.getAbsolutePath() + ".csv")); } testFile = new File(testFile.getAbsolutePath() + ".csv"); CSVLoader loader = new CSVLoader(); Instances trainDataset = null; Instances testDataset = null; try { loader.setFile(trainFile); loader.setNominalAttributes("first"); trainDataset = loader.getDataSet(); trainDataset.setClassIndex(0); loader.setFile(testFile); loader.setNominalAttributes("first"); testDataset = loader.getDataSet(); testDataset.setClassIndex(0); } catch (Exception e) { e.printStackTrace(); } return new Instances[] { trainDataset, testDataset }; }
From source file:classification.classifiers.LDA.java
License:Open Source License
/** * Modification on Dr. Wolfgang Lenhard's code. * This was necessary because this classifier had to implements * "buildClassifier" and "classifyInstance" to be like a classifier of WEKA(R). * // w w w. ja va 2 s . c o m * @param data * @throws Exception */ public void buildClassifier(Instances data) throws Exception { int n = data.numInstances(); int a = data.numAttributes(); int k = data.numClasses(); int[] g = new int[n]; double[][] d = new double[n][a]; for (int i = 0; i < n; i++) { double[] d_i = data.instance(i).toDoubleArray(); d[i] = d_i; /** * To print the attribute with the correspondent double * * System.out.print("\n"); for(int j=0; j<a; j++){ * System.out.print(data.instance(i).stringValue(data.attribute(j)) * + " = "); * System.out.print(data.instance(i).value(data.attribute(j)) + * "; "); } System.out.print("\n"); / **/ } // Gives the number of objects belonging to class i in the trainingSet. int classIndex = a - 1; valueClass = new double[k]; data.setClassIndex(classIndex); for (int i = 0; i < k; i++) { // Reference class String refClass = data.classAttribute().value(i); // // System.out.println("refClass: " + refClass + " "); for (int j = 0; j < n; j++) { // Object class String objectClass = data.instance(j).stringValue(classIndex); // // System.out.println("objectClass: " + objectClass + " - value: // " + data.instance(j).value(data.attribute(classIndex))); // Building two vectors of classes, one in int format and // another in double format. if (objectClass == refClass) { // Object class as a double valueClass[i] = data.instance(j).value(data.attribute(classIndex)); // Object class as an int g[j] = i; // // System.out.println("value of class (int): " + g[j] + " // ___ value (double): " + valueClass[i]); } } } this.BuildLDA(d, g, true); }
From source file:classifier.CustomStringToWordVector.java
License:Open Source License
/** * determines the dictionary./*www . j a va2 s . c o m*/ */ private void determineDictionary() { if (forcedAttributes == null) { // initialize stopwords Stopwords stopwords = new Stopwords(); if (getUseStoplist()) { try { if (getStopwords().exists() && !getStopwords().isDirectory()) stopwords.read(getStopwords()); } catch (Exception e) { e.printStackTrace(); } } // Operate on a per-class basis if class attribute is set int classInd = getInputFormat().classIndex(); int values = 1; if (!m_doNotOperateOnPerClassBasis && (classInd != -1)) { values = getInputFormat().attribute(classInd).numValues(); } // TreeMap dictionaryArr [] = new TreeMap[values]; TreeMap[] dictionaryArr = new TreeMap[values]; for (int i = 0; i < values; i++) { dictionaryArr[i] = new TreeMap(); } // Make sure we know which fields to convert determineSelectedRange(); // Tokenize all training text into an orderedMap of "words". long pruneRate = Math.round((m_PeriodicPruningRate / 100.0) * getInputFormat().numInstances()); for (int i = 0; i < getInputFormat().numInstances(); i++) { Instance instance = getInputFormat().instance(i); int vInd = 0; if (!m_doNotOperateOnPerClassBasis && (classInd != -1)) { vInd = (int) instance.classValue(); } // Iterate through all relevant string attributes of the current // instance Hashtable h = new Hashtable(); for (int j = 0; j < instance.numAttributes(); j++) { if (m_SelectedRange.isInRange(j) && (instance.isMissing(j) == false)) { // Get tokenizer m_Tokenizer.tokenize(instance.stringValue(j)); // Iterate through tokens, perform stemming, and remove // stopwords // (if required) while (m_Tokenizer.hasMoreElements()) { String word = ((String) m_Tokenizer.nextElement()).intern(); if (this.m_lowerCaseTokens == true) word = word.toLowerCase(); word = m_Stemmer.stem(word); if (this.m_useStoplist == true) if (stopwords.is(word)) continue; if (!(h.contains(word))) h.put(word, new Integer(0)); Count count = (Count) dictionaryArr[vInd].get(word); if (count == null) { dictionaryArr[vInd].put(word, new Count(1)); } else { count.count++; } } } } // updating the docCount for the words that have occurred in // this // instance(document). Enumeration e = h.keys(); while (e.hasMoreElements()) { String word = (String) e.nextElement(); Count c = (Count) dictionaryArr[vInd].get(word); if (c != null) { c.docCount++; } else System.err.println("Warning: A word should definitely be in the " + "dictionary.Please check the code"); } if (pruneRate > 0) { if (i % pruneRate == 0 && i > 0) { for (int z = 0; z < values; z++) { Vector d = new Vector(1000); Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); if (count.count <= 1) { d.add(word); } } Iterator iter = d.iterator(); while (iter.hasNext()) { String word = (String) iter.next(); dictionaryArr[z].remove(word); } } } } } // Figure out the minimum required word frequency int totalsize = 0; int prune[] = new int[values]; for (int z = 0; z < values; z++) { totalsize += dictionaryArr[z].size(); int array[] = new int[dictionaryArr[z].size()]; int pos = 0; Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); array[pos] = count.count; pos++; } // sort the array sortArray(array); if (array.length < m_WordsToKeep) { // if there aren't enough words, set the threshold to // minFreq prune[z] = m_minTermFreq; } else { // otherwise set it to be at least minFreq prune[z] = Math.max(m_minTermFreq, array[array.length - m_WordsToKeep]); } } // Convert the dictionary into an attribute index // and create one attribute per word FastVector attributes = new FastVector(totalsize + getInputFormat().numAttributes()); // Add the non-converted attributes int classIndex = -1; for (int i = 0; i < getInputFormat().numAttributes(); i++) { if (!m_SelectedRange.isInRange(i)) { if (getInputFormat().classIndex() == i) { classIndex = attributes.size(); } attributes.addElement(getInputFormat().attribute(i).copy()); } } // Add the word vector attributes (eliminating duplicates // that occur in multiple classes) TreeMap newDictionary = new TreeMap(); int index = attributes.size(); for (int z = 0; z < values; z++) { Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); if (count.count >= prune[z]) { if (newDictionary.get(word) == null) { newDictionary.put(word, new Integer(index++)); attributes.addElement(new Attribute(m_Prefix + word)); } } } } // Compute document frequencies m_DocsCounts = new int[attributes.size()]; Iterator it = newDictionary.keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); int idx = ((Integer) newDictionary.get(word)).intValue(); int docsCount = 0; for (int j = 0; j < values; j++) { Count c = (Count) dictionaryArr[j].get(word); if (c != null) docsCount += c.docCount; } m_DocsCounts[idx] = docsCount; } // Trim vector and set instance variables attributes.trimToSize(); m_Dictionary = newDictionary; m_NumInstances = getInputFormat().numInstances(); // Set the filter's output format Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0); outputFormat.setClassIndex(classIndex); setOutputFormat(outputFormat); } else { //m_Dictionary = newDictionary; determineSelectedRange(); m_NumInstances = getInputFormat().numInstances(); TreeMap newDictionary = new TreeMap(); for (int i = 2; i < forcedAttributes.size(); i++) { newDictionary.put(((Attribute) forcedAttributes.get(i)).name(), new Integer(i)); } m_Dictionary = newDictionary; // Set the filter's output format Instances outputFormat = new Instances(getInputFormat().relationName(), forcedAttributes, 0); outputFormat.setClassIndex(1); setOutputFormat(outputFormat); } }
From source file:classifier.page.PageClassifier.java
License:Open Source License
public static PageClassifier loadClassifier(String cfgDir) throws IOException, ClassNotFoundException { String stoplistFile = cfgDir + "/stoplist.txt"; String modelFile = cfgDir + "/pageclassifier.model"; String featureFile = cfgDir + "/pageclassifier.features"; StopList stoplist = new StopListArquivo(stoplistFile); InputStream is = new FileInputStream(modelFile); ObjectInputStream objectInputStream = new ObjectInputStream(is); Classifier classifier = (Classifier) objectInputStream.readObject(); ParameterFile featureConfig = new ParameterFile(featureFile); String[] attributes = featureConfig.getParam("ATTRIBUTES", " "); weka.core.FastVector vectorAtt = new weka.core.FastVector(); for (int i = 0; i < attributes.length; i++) { vectorAtt.addElement(new weka.core.Attribute(attributes[i])); }/* w w w . j a va2 s. c o m*/ String[] classValues = featureConfig.getParam("CLASS_VALUES", " "); weka.core.FastVector classAtt = new weka.core.FastVector(); for (int i = 0; i < classValues.length; i++) { classAtt.addElement(classValues[i]); } vectorAtt.addElement(new weka.core.Attribute("class", classAtt)); Instances insts = new Instances("target_classification", vectorAtt, 1); insts.setClassIndex(attributes.length); return new PageClassifier(classifier, insts, attributes, stoplist); }
From source file:classifier.SellerClassifier.java
private Instances loadData(String dataset) throws Exception { DataSource data = new DataSource(dataset); Instances instances = data.getDataSet(); if (instances.classIndex() == -1) { instances.setClassIndex(instances.numAttributes() - 1); }// w w w . j a v a2 s.c o m return instances; }
From source file:classify.Classifier.java
/** * @param args the command line arguments *///from w ww. ja v a 2s .co m public static void main(String[] args) { //read in data try { DataSource input = new DataSource("no_missing_values.csv"); Instances data = input.getDataSet(); //Instances data = readFile("newfixed.txt"); missingValuesRows(data); setAttributeValues(data); data.setClassIndex(data.numAttributes() - 1); //boosting AdaBoostM1 boosting = new AdaBoostM1(); boosting.setNumIterations(25); boosting.setClassifier(new DecisionStump()); //build the classifier boosting.buildClassifier(data); //evaluate using 10-fold cross validation Evaluation e1 = new Evaluation(data); e1.crossValidateModel(boosting, data, 10, new Random(1)); DecimalFormat nf = new DecimalFormat("0.000"); System.out.println("Results of Boosting with Decision Stumps:"); System.out.println(boosting.toString()); System.out.println("Results of Cross Validation:"); System.out.println("Number of correctly classified instances: " + e1.correct() + " (" + nf.format(e1.pctCorrect()) + "%)"); System.out.println("Number of incorrectly classified instances: " + e1.incorrect() + " (" + nf.format(e1.pctIncorrect()) + "%)"); System.out.println("TP Rate: " + nf.format(e1.weightedTruePositiveRate() * 100) + "%"); System.out.println("FP Rate: " + nf.format(e1.weightedFalsePositiveRate() * 100) + "%"); System.out.println("Precision: " + nf.format(e1.weightedPrecision() * 100) + "%"); System.out.println("Recall: " + nf.format(e1.weightedRecall() * 100) + "%"); System.out.println(); System.out.println("Confusion Matrix:"); for (int i = 0; i < e1.confusionMatrix().length; i++) { for (int j = 0; j < e1.confusionMatrix()[0].length; j++) { System.out.print(e1.confusionMatrix()[i][j] + " "); } System.out.println(); } System.out.println(); System.out.println(); System.out.println(); //logistic regression Logistic l = new Logistic(); l.buildClassifier(data); e1 = new Evaluation(data); e1.crossValidateModel(l, data, 10, new Random(1)); System.out.println("Results of Logistic Regression:"); System.out.println(l.toString()); System.out.println("Results of Cross Validation:"); System.out.println("Number of correctly classified instances: " + e1.correct() + " (" + nf.format(e1.pctCorrect()) + "%)"); System.out.println("Number of incorrectly classified instances: " + e1.incorrect() + " (" + nf.format(e1.pctIncorrect()) + "%)"); System.out.println("TP Rate: " + nf.format(e1.weightedTruePositiveRate() * 100) + "%"); System.out.println("FP Rate: " + nf.format(e1.weightedFalsePositiveRate() * 100) + "%"); System.out.println("Precision: " + nf.format(e1.weightedPrecision() * 100) + "%"); System.out.println("Recall: " + nf.format(e1.weightedRecall() * 100) + "%"); System.out.println(); System.out.println("Confusion Matrix:"); for (int i = 0; i < e1.confusionMatrix().length; i++) { for (int j = 0; j < e1.confusionMatrix()[0].length; j++) { System.out.print(e1.confusionMatrix()[i][j] + " "); } System.out.println(); } } catch (Exception ex) { //data couldn't be read, so end program System.out.println("Exception thrown, program ending."); } }
From source file:clusterer.SimpleKMeansWithSilhouette.java
License:Open Source License
/** * Generates a clusterer. Has to initialize all fields of the clusterer that * are not being set via options.//from w w w . j ava2 s . c om * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been generated successfully */ @Override public void buildClusterer(Instances data) throws Exception { m_canopyClusters = null; // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0; m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][]; m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = instances.variances(); } m_FullMeansOrMediansOrModes = moveCentroid(0, instances, true, false); m_FullMissingCounts = m_ClusterMissingCounts[0]; m_FullNominalCounts = m_ClusterNominalCounts[0]; double sumOfWeights = instances.sumOfWeights(); for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(m_FullStdDevs[i]); } if (m_FullMissingCounts[i] == sumOfWeights) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean } } else { if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common // value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) { m_Assignments = clusterAssignments; } m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap<DecisionTableHashKey, Integer> initC = new HashMap<DecisionTableHashKey, Integer>(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) { initInstances = new Instances(instances); } else { initInstances = instances; } if (m_speedUpDistanceCompWithCanopies) { m_canopyClusters = new Canopy(); m_canopyClusters.setNumClusters(m_NumClusters); m_canopyClusters.setSeed(getSeed()); m_canopyClusters.setT2(getCanopyT2()); m_canopyClusters.setT1(getCanopyT1()); m_canopyClusters.setMaxNumCandidateCanopiesToHoldInMemory(getCanopyMaxNumCanopiesToHoldInMemory()); m_canopyClusters.setPeriodicPruningRate(getCanopyPeriodicPruningRate()); m_canopyClusters.setMinimumCanopyDensity(getCanopyMinimumCanopyDensity()); m_canopyClusters.setDebug(getDebug()); m_canopyClusters.buildClusterer(initInstances); // System.err.println(m_canopyClusters); m_centroidCanopyAssignments = new ArrayList<long[]>(); m_dataPointCanopyAssignments = new ArrayList<long[]>(); } if (m_initializationMethod == KMEANS_PLUS_PLUS) { kMeansPlusPlusInit(initInstances); m_initialStartPoints = new Instances(m_ClusterCentroids); } else if (m_initializationMethod == CANOPY) { canopyInit(initInstances); m_initialStartPoints = new Instances(m_canopyClusters.getCanopies()); } else if (m_initializationMethod == FARTHEST_FIRST) { farthestFirstInit(initInstances); m_initialStartPoints = new Instances(m_ClusterCentroids); } else { // random for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_initialStartPoints = new Instances(m_ClusterCentroids); } if (m_speedUpDistanceCompWithCanopies) { // assign canopies to training data for (int i = 0; i < instances.numInstances(); i++) { m_dataPointCanopyAssignments.add(m_canopyClusters.assignCanopies(instances.instance(i))); } } m_NumClusters = m_ClusterCentroids.numInstances(); // removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()]; startExecutorPool(); while (!converged) { if (m_speedUpDistanceCompWithCanopies) { // re-assign canopies to the current cluster centers m_centroidCanopyAssignments.clear(); for (int kk = 0; kk < m_ClusterCentroids.numInstances(); kk++) { m_centroidCanopyAssignments .add(m_canopyClusters.assignCanopies(m_ClusterCentroids.instance(kk))); } } emptyClusterCount = 0; m_Iterations++; converged = true; if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) { for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, false, true, m_speedUpDistanceCompWithCanopies ? m_dataPointCanopyAssignments.get(i) : null); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } } else { converged = launchAssignToClusters(instances, clusterAssignments); } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) { for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true, true); } } } else { emptyClusterCount = launchMoveCentroids(tempI); } if (m_Iterations == m_MaxIterations) { converged = true; } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index] = tempI[k]; for (i = 0; i < tempI[k].numAttributes(); i++) { m_ClusterNominalCounts[index][i] = m_ClusterNominalCounts[k][i]; } index++; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (!converged) { m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0]; } } // calculate errors if (!m_FastDistanceCalc) { for (i = 0; i < instances.numInstances(); i++) { clusterProcessedInstance(instances.instance(i), true, false, null); } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new double[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = tempI[i].variances(); for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(vals2[j]); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].sumOfWeights(); } m_executorPool.shutdown(); // save memory! m_DistanceFunction.clean(); // Calculate Silhouette Coefficient SilCoeff = new double[instances.numInstances()]; AvgSilCoeff = 0; for (int z = 0; z < instances.numInstances(); z++) { double[] distance = new double[m_NumClusters]; Arrays.fill(distance, 0.0); //Sum for (int y = 0; y < instances.numInstances(); y++) { distance[clusterAssignments[y]] += m_DistanceFunction.distance(instances.get(z), instances.get(y)); } //Average for (int x = 0; x < m_NumClusters; x++) { distance[x] = distance[x] / m_ClusterSizes[x]; } double a = distance[clusterAssignments[z]]; distance[clusterAssignments[z]] = Double.MAX_VALUE; Arrays.sort(distance); double b = distance[0]; SilCoeff[z] = (b - a) / Math.max(a, b); AvgSilCoeff += SilCoeff[z]; } AvgSilCoeff = AvgSilCoeff / instances.numInstances(); //System.out.println("AvgSilCoeff: " + AvgSilCoeff); }
From source file:cn.edu.xjtu.dbmine.StringToWordVector.java
License:Open Source License
/** * determines the dictionary.// w ww . j a v a2 s.co m */ private void determineDictionary() { // initialize stopwords Stopwords stopwords = new Stopwords(); if (getUseStoplist()) { try { if (getStopwords().exists() && !getStopwords().isDirectory()) stopwords.read(getStopwords()); } catch (Exception e) { e.printStackTrace(); } } // Operate on a per-class basis if class attribute is set int classInd = getInputFormat().classIndex(); int values = 1; if (!m_doNotOperateOnPerClassBasis && (classInd != -1)) { values = getInputFormat().attribute(classInd).numValues(); // System.out.println("number of class:"+getInputFormat().numClasses()+" "+getInputFormat().attribute(classInd).value(0)); } // TreeMap dictionaryArr [] = new TreeMap[values]; TreeMap[] dictionaryArr = new TreeMap[values]; for (int i = 0; i < values; i++) { dictionaryArr[i] = new TreeMap(); } // Make sure we know which fields to convert determineSelectedRange(); // Tokenize all training text into an orderedMap of "words". long pruneRate = Math.round((m_PeriodicPruningRate / 100.0) * getInputFormat().numInstances()); for (int i = 0; i < getInputFormat().numInstances(); i++) { Instance instance = getInputFormat().instance(i); int vInd = 0; if (!m_doNotOperateOnPerClassBasis && (classInd != -1)) { vInd = (int) instance.classValue(); } // Iterate through all relevant string attributes of the current // instance Hashtable h = new Hashtable(); for (int j = 0; j < instance.numAttributes(); j++) { if (m_SelectedRange.isInRange(j) && (instance.isMissing(j) == false)) { // Get tokenizer m_Tokenizer.tokenize(instance.stringValue(j)); // Iterate through tokens, perform stemming, and remove // stopwords // (if required) while (m_Tokenizer.hasMoreElements()) { String word = ((String) m_Tokenizer.nextElement()).intern(); if (this.m_lowerCaseTokens == true) word = word.toLowerCase(); word = m_Stemmer.stem(word); if (this.m_useStoplist == true) if (stopwords.is(word)) continue; if (!(h.contains(word))) h.put(word, new Integer(0)); Count count = (Count) dictionaryArr[vInd].get(word); if (count == null) { dictionaryArr[vInd].put(word, new Count(1)); } else { count.count++; } } } } // updating the docCount for the words that have occurred in this // instance(document). Enumeration e = h.keys(); while (e.hasMoreElements()) { String word = (String) e.nextElement(); Count c = (Count) dictionaryArr[vInd].get(word); if (c != null) { c.docCount++; // c.doclist.add(vInd); } else System.err.println( "Warning: A word should definitely be in the " + "dictionary.Please check the code"); } if (pruneRate > 0) { if (i % pruneRate == 0 && i > 0) { for (int z = 0; z < values; z++) { Vector d = new Vector(1000); Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); if (count.count <= 1) { d.add(word); } } Iterator iter = d.iterator(); while (iter.hasNext()) { String word = (String) iter.next(); dictionaryArr[z].remove(word); } } } } } // Figure out the minimum required word frequency int totalsize = 0; int prune[] = new int[values]; for (int z = 0; z < values; z++) { totalsize += dictionaryArr[z].size(); int array[] = new int[dictionaryArr[z].size()]; int pos = 0; Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); array[pos] = count.count; pos++; } // sort the array sortArray(array); if (array.length < m_WordsToKeep) { // if there aren't enough words, set the threshold to // minFreq prune[z] = m_minTermFreq; } else { // otherwise set it to be at least minFreq prune[z] = Math.max(m_minTermFreq, array[array.length - m_WordsToKeep]); } } // Convert the dictionary into an attribute index // and create one attribute per word FastVector attributes = new FastVector(totalsize + getInputFormat().numAttributes()); // Add the non-converted attributes int classIndex = -1; for (int i = 0; i < getInputFormat().numAttributes(); i++) { if (!m_SelectedRange.isInRange(i)) { if (getInputFormat().classIndex() == i) { classIndex = attributes.size(); } attributes.addElement(getInputFormat().attribute(i).copy()); } } // Add the word vector attributes (eliminating duplicates // that occur in multiple classes) TreeMap newDictionary = new TreeMap(); int index = attributes.size(); for (int z = 0; z < values; z++) { Iterator it = dictionaryArr[z].keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); Count count = (Count) dictionaryArr[z].get(word); if (count.count >= prune[z]) { if (newDictionary.get(word) == null) { newDictionary.put(word, new Integer(index++)); attributes.addElement(new Attribute(m_Prefix + word)); } } } } // Compute document frequencies m_DocsCounts = new int[attributes.size()]; Iterator it = newDictionary.keySet().iterator(); while (it.hasNext()) { String word = (String) it.next(); int idx = ((Integer) newDictionary.get(word)).intValue(); int docsCount = 0; for (int j = 0; j < values; j++) { Count c = (Count) dictionaryArr[j].get(word); if (c != null) docsCount += c.docCount; /* * if(!ctd.containsKey(j)){ Map<Integer,Integer> ma = new * HashMap<Integer,Integer>(); ctd.put(j, ma); } */ // if(ctd.get(j)==null) // ctd.get(j).put(idx, c); // int tt = ctd.get(j).get(idx); /* * for(int kk = 0;kk<c.doclist.size();kk++) { * //if(getInputFormat * ().instance(c.doclist.get(kk)).value(idx)>0) * ctd.get(j).put(idx, tt++); } */} m_DocsCounts[idx] = docsCount; } // Trim vector and set instance variables attributes.trimToSize(); m_Dictionary = newDictionary; m_NumInstances = getInputFormat().numInstances(); // Set the filter's output format Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0); outputFormat.setClassIndex(classIndex); setOutputFormat(outputFormat); }
From source file:cn.edu.xmu.dm.d3c.clustering.SimpleKMeans.java
License:Open Source License
/** * Generates a clusterer. Has to initialize all fields of the clusterer * that are not being set via options.//from w ww. jav a 2s . com * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been * generated successfully */ public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0; m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_FullMissingCounts = new int[instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = new double[instances.numAttributes()]; } m_FullNominalCounts = new int[instances.numAttributes()][0]; m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); for (int i = 0; i < instances.numAttributes(); i++) { m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); } if (m_FullMissingCounts[i] == instances.numInstances()) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean } } else { m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) m_Assignments = clusterAssignments; m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap initC = new HashMap(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) initInstances = new Instances(instances); else initInstances = instances; if (m_initializeWithKMeansPlusPlus) { kMeansPlusPlusInit(initInstances); } else { for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } } m_NumClusters = m_ClusterCentroids.numInstances(); //removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; while (!converged) { emptyClusterCount = 0; m_Iterations++; converged = true; for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, false, true); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true); } } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index++] = tempI[k]; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (m_Iterations == m_MaxIterations) converged = true; if (!converged) { m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; } } // calculate errors if (!m_FastDistanceCalc) { for (i = 0; i < instances.numInstances(); i++) { clusterProcessedInstance(instances.instance(i), true, false); } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new int[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = new double[instances.numAttributes()]; for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(tempI[i].variance(j)); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].numInstances(); } }
From source file:cn.ict.zyq.bestConf.bestConf.BestConf.java
License:Open Source License
public static void testCOMT2() throws Exception { BestConf bestconf = new BestConf(); Instances trainingSet = DataIOFile.loadDataFromArffFile("data/trainingBestConf0.arff"); trainingSet.setClassIndex(trainingSet.numAttributes() - 1); Instances samplePoints = LHSInitializer.getMultiDimContinuous(bestconf.getAttributes(), InitialSampleSetSize, false); samplePoints.insertAttributeAt(trainingSet.classAttribute(), samplePoints.numAttributes()); samplePoints.setClassIndex(samplePoints.numAttributes() - 1); COMT2 comt = new COMT2(samplePoints, COMT2Iteration); comt.buildClassifier(trainingSet);/* w ww .j av a 2s . co m*/ Evaluation eval = new Evaluation(trainingSet); eval.evaluateModel(comt, trainingSet); System.err.println(eval.toSummaryString()); Instance best = comt.getInstanceWithPossibleMaxY(samplePoints.firstInstance()); Instances bestInstances = new Instances(trainingSet, 2); bestInstances.add(best); DataIOFile.saveDataToXrffFile("data/trainingBestConf_COMT2.arff", bestInstances); //now we output the training set with the class value updated as the predicted value Instances output = new Instances(trainingSet, trainingSet.numInstances()); Enumeration<Instance> enu = trainingSet.enumerateInstances(); while (enu.hasMoreElements()) { Instance ins = enu.nextElement(); double[] values = ins.toDoubleArray(); values[values.length - 1] = comt.classifyInstance(ins); output.add(ins.copy(values)); } DataIOFile.saveDataToXrffFile("data/trainingBestConf0_predict.xrff", output); }