List of usage examples for weka.core Instances resample
public Instances resample(Random random)
From source file:Control.Classificador.java
public ArrayList<Resultado> classificar(Plano plano, Arquivo arq) { try {/* w w w . j av a2 s .c o m*/ FileReader leitor = new FileReader(arq.arquivo); Instances conjunto = new Instances(leitor); conjunto.setClassIndex(conjunto.numAttributes() - 1); Evaluation avaliacao = new Evaluation(conjunto); conjunto = conjunto.resample(new Random()); Instances baseTreino = null, baseTeste = null; Random rand = new Random(1); if (plano.eHoldOut) { baseTeste = conjunto.testCV(3, 0); baseTreino = conjunto.trainCV(3, 0); } else { baseTeste = baseTreino = conjunto; } if (plano.IBK) { try { IB1 vizinho = new IB1(); vizinho.buildClassifier(baseTeste); avaliacao.crossValidateModel(vizinho, baseTeste, (plano.eHoldOut) ? 4 : baseTeste.numInstances(), rand); Resultado resultado = new Resultado("NN", avaliacao.toMatrixString("Algortmo Vizinho Mais Prximo - Matriz de Confuso"), avaliacao.toClassDetailsString("kNN")); resultado.setTaxaErro(avaliacao.errorRate()); resultado.setTaxaAcerto(1 - avaliacao.errorRate()); resultado.setRevocacao(recallToDouble(avaliacao, baseTeste)); resultado.setPrecisao(precisionToDouble(avaliacao, baseTeste)); this.resultados.add(resultado); } catch (UnsupportedAttributeTypeException ex) { Mensagem.erro("Algortmo IB1 no suporta atributos numricos!", "MTCS - ERRO"); } } if (plano.J48) { try { J48 j48 = new J48(); j48.buildClassifier(baseTeste); avaliacao.crossValidateModel(j48, baseTeste, (plano.eHoldOut) ? 4 : baseTeste.numInstances(), rand); Resultado resultado = new Resultado("J48", avaliacao.toMatrixString("Algortmo J48 - Matriz de Confuso"), avaliacao.toClassDetailsString("J48")); resultado.setTaxaErro(avaliacao.errorRate()); resultado.setTaxaAcerto(1 - avaliacao.errorRate()); resultado.setRevocacao(recallToDouble(avaliacao, baseTeste)); resultado.setPrecisao(precisionToDouble(avaliacao, baseTeste)); this.resultados.add(resultado); } catch (UnsupportedAttributeTypeException ex) { Mensagem.erro("Algortmo J48 no suporta atributos nominais!", "MTCS - ERRO"); } } if (plano.KNN) { try { IBk knn = new IBk(3); knn.buildClassifier(baseTeste); avaliacao.crossValidateModel(knn, baseTeste, (plano.eHoldOut) ? 4 : baseTeste.numInstances(), rand); Resultado resultado = new Resultado("KNN", avaliacao.toMatrixString("Algortmo KNN - Matriz de Confuso"), avaliacao.toClassDetailsString("kNN")); resultado.setTaxaErro(avaliacao.errorRate()); resultado.setTaxaAcerto(1 - avaliacao.errorRate()); resultado.setRevocacao(recallToDouble(avaliacao, baseTeste)); resultado.setPrecisao(precisionToDouble(avaliacao, baseTeste)); this.resultados.add(resultado); } catch (UnsupportedAttributeTypeException ex) { Mensagem.erro("Algortmo KNN no suporta atributos numricos!", "MTCS - ERRO"); } } if (plano.Naive) { NaiveBayes naive = new NaiveBayes(); naive.buildClassifier(baseTeste); avaliacao.crossValidateModel(naive, baseTeste, (plano.eHoldOut) ? 4 : baseTeste.numInstances(), rand); Resultado resultado = new Resultado("Naive", avaliacao.toMatrixString("Algortmo NaiveBayes - Matriz de Confuso"), avaliacao.toClassDetailsString("kNN")); resultado.setTaxaErro(avaliacao.errorRate()); resultado.setTaxaAcerto(1 - avaliacao.errorRate()); resultado.setRevocacao(recallToDouble(avaliacao, baseTeste)); resultado.setPrecisao(precisionToDouble(avaliacao, baseTeste)); this.resultados.add(resultado); } if (plano.Tree) { try { Id3 id3 = new Id3(); id3.buildClassifier(baseTeste); avaliacao.crossValidateModel(id3, baseTeste, (plano.eHoldOut) ? 4 : baseTeste.numInstances(), rand); Resultado resultado = new Resultado("ID3", avaliacao.toMatrixString("Algortmo ID3 - Matriz de Confuso"), avaliacao.toClassDetailsString("kNN")); resultado.setTaxaErro(avaliacao.errorRate()); resultado.setTaxaAcerto(1 - avaliacao.errorRate()); resultado.setRevocacao(recallToDouble(avaliacao, baseTeste)); resultado.setPrecisao(precisionToDouble(avaliacao, baseTeste)); this.resultados.add(resultado); } catch (UnsupportedAttributeTypeException ex) { Mensagem.erro("Algortmo Arvore de Deciso no suporta atributos numricos!", "MTCS - ERRO"); } } } catch (FileNotFoundException ex) { Logger.getLogger(Classificador.class.getName()).log(Level.SEVERE, null, ex); } catch (IOException ex) { Logger.getLogger(Classificador.class.getName()).log(Level.SEVERE, null, ex); } catch (NullPointerException ex) { Mensagem.erro("Selecione um arquivo para comear!", "MTCS - ERRO"); Logger.getLogger(Classificador.class.getName()).log(Level.SEVERE, null, ex); } catch (Exception ex) { Logger.getLogger(Classificador.class.getName()).log(Level.SEVERE, null, ex); } return this.resultados; }
From source file:semana07.IrisKnn.java
public static void main(String[] args) throws FileNotFoundException, IOException, Exception { // DEFININDO CONJUNTO DE TREINAMENTO // - Definindo o leitor do arquivo arff FileReader baseIris = new FileReader("iris.arff"); // - Definindo o grupo de instancias a partir do arquivo "simpsons.arff" Instances iris = new Instances(baseIris); // - Definindo o indice do atributo classe iris.setClassIndex(4);/* w ww .j a va 2 s. com*/ iris = iris.resample(new Debug.Random()); Instances irisTreino = iris.trainCV(3, 0); Instances irisTeste = iris.testCV(3, 0); // DEFININDO EXEMPLO DESCONHECIDO //5.9,3.0,5.1,1.8,Iris-virginica Instance irisInst = new DenseInstance(iris.numAttributes()); irisInst.setDataset(iris); irisInst.setValue(0, 5.9); irisInst.setValue(1, 3.0); irisInst.setValue(2, 5.1); irisInst.setValue(3, 1.8); // DEFININDO ALGORITMO DE CLASSIFICAO //NN IBk vizinhoIris = new IBk(); //kNN IBk knnIris = new IBk(3); // MONTANDO CLASSIFICADOR //NN vizinhoIris.buildClassifier(irisTreino); //kNN knnIris.buildClassifier(irisTreino); // Definindo arquivo a ser escrito FileWriter writer = new FileWriter("iris.csv"); // Escrevendo o cabealho do arquivo writer.append("Classe Real;Resultado NN;Resultado kNN"); writer.append(System.lineSeparator()); // Sada CLI / Console System.out.println("Classe Real;Resultado NN;Resultado kNN"); //Cabealho for (int i = 0; i <= irisTeste.numInstances() - 1; i++) { Instance testeIris = irisTeste.instance(i); // Sada CLI / Console do valor original System.out.print(testeIris.stringValue(4) + ";"); // Escrevendo o valor original no arquivo writer.append(testeIris.stringValue(4) + ";"); // Definindo o atributo classe como indefinido testeIris.setClassMissing(); // CLASSIFICANDO A INSTANCIA // NN double respostaVizinho = vizinhoIris.classifyInstance(testeIris); testeIris.setValue(4, respostaVizinho); String stringVizinho = testeIris.stringValue(4); //kNN double respostaKnn = knnIris.classifyInstance(testeIris); // Atribuindo respota ao valor do atributo do index 4(classe) testeIris.setValue(4, respostaKnn); String stringKnn = testeIris.stringValue(4); // Adicionando resultado ao grupo de instancia iris iris.add(irisInst); //Escrevendo os resultados no arquivo iris.csv writer.append(stringVizinho + ";"); writer.append(stringKnn + ";"); writer.append(System.lineSeparator()); // Exibindo via CLI / Console o resultado System.out.print(respostaVizinho + ";"); System.out.print(respostaKnn + ";"); System.out.println(testeIris.stringValue(4)); } writer.flush(); writer.close(); }