Example usage for weka.core Instances lastInstance

List of usage examples for weka.core Instances lastInstance

Introduction

In this page you can find the example usage for weka.core Instances lastInstance.

Prototype


publicInstance lastInstance() 

Source Link

Document

Returns the last instance in the set.

Usage

From source file:com.hack23.cia.service.impl.action.user.wordcount.WordCounterImpl.java

License:Apache License

@Override
public Map<String, Integer> calculateWordCount(final DocumentContentData documentContentData,
        final int maxResult) {

    final String html = documentContentData.getContent();

    final Attribute input = new Attribute("html", (ArrayList<String>) null);

    final ArrayList<Attribute> inputVec = new ArrayList<>();
    inputVec.add(input);/*from   www  .  j ava2  s .  c  om*/

    final Instances htmlInst = new Instances("html", inputVec, 1);

    htmlInst.add(new DenseInstance(1));
    htmlInst.instance(0).setValue(0, html);

    final StopwordsHandler StopwordsHandler = new StopwordsHandler() {

        @Override
        public boolean isStopword(final String word) {

            return word.length() < 5;
        }
    };

    final NGramTokenizer tokenizer = new NGramTokenizer();
    tokenizer.setNGramMinSize(1);
    tokenizer.setNGramMaxSize(1);
    tokenizer.setDelimiters(" \r\n\t.,;:'\"()?!'");

    final StringToWordVector filter = new StringToWordVector();
    filter.setTokenizer(tokenizer);
    filter.setStopwordsHandler(StopwordsHandler);
    filter.setLowerCaseTokens(true);
    filter.setOutputWordCounts(true);
    filter.setWordsToKeep(maxResult);

    final Map<String, Integer> result = new HashMap<>();

    try {
        filter.setInputFormat(htmlInst);
        final Instances dataFiltered = Filter.useFilter(htmlInst, filter);

        final Instance last = dataFiltered.lastInstance();

        final int numAttributes = last.numAttributes();

        for (int i = 0; i < numAttributes; i++) {
            result.put(last.attribute(i).name(), Integer.valueOf(last.toString(i)));
        }
    } catch (final Exception e) {
        LOGGER.warn("Problem calculating wordcount for : {} , exception:{}", documentContentData.getId(), e);
    }

    return result;
}

From source file:controller.MineroControler.java

public String regresionLineal() {
    BufferedReader breader = null;
    Instances datos = null;
    breader = new BufferedReader(fuente_arff);
    try {/*from   w  w  w .j a  v  a2 s . com*/
        datos = new Instances(breader);
        datos.setClassIndex(datos.numAttributes() - 1); // clase principal, ltima en atributos
    } catch (IOException ex) {
        System.err.println("Problemas al intentar cargar los datos");
    }

    LinearRegression regresionL = new LinearRegression();
    try {

        regresionL.buildClassifier(datos);

        Instance nuevaCal = datos.lastInstance();
        double calif = regresionL.classifyInstance(nuevaCal);

        setValorCalculado(new Double(calif));

    } catch (Exception ex) {
        System.err.println("Problemas al clasificar instancia");
    }

    return regresionL.toString();
}

From source file:data.Regression.java

public int regression(String fileName) {

    String arffName = FileTransfer.transfer(fileName);

    try {/* www.  ja  v a  2  s .c om*/
        //load data
        Instances data = new Instances(new BufferedReader(new FileReader(arffName)));
        data.setClassIndex(data.numAttributes() - 1);
        //build model
        LinearRegression model = new LinearRegression();
        model.buildClassifier(data);
        //the last instance with missing class is not used
        System.out.println(model);
        //classify the last instance
        Instance num = data.lastInstance();
        int people = (int) model.classifyInstance(num);
        System.out.println("NumOfEnrolled (" + num + "): " + people);
        return people;
    } catch (Exception e) {
        e.printStackTrace();
        System.out.println("Regression fail");
    }
    return 0;
}

From source file:data.RegressionDrop.java

public void regression() throws Exception {

    //public static void main(String[] args) throws Exception{

    //load data//from w  ww .  java 2  s.  co m
    Instances data = new Instances(new BufferedReader(new FileReader("NumOfDroppedByYear.arff")));
    data.setClassIndex(data.numAttributes() - 1);
    //build model
    LinearRegression model = new LinearRegression();
    model.buildClassifier(data);
    //the last instance with missing class is not used
    System.out.println(model);
    //classify the last instance
    Instance num = data.lastInstance();
    int people = (int) model.classifyInstance(num);
    System.out.println("NumOfDropped (" + num + "): " + people);
}

From source file:eksploracja.Eksploracja.java

/**
 * @param args the command line arguments
 *///from  www . j a  v a2 s . c o m
public static void main(String[] args) throws Exception {
    // TODO code application logic here
    //sout +tabualcja

    System.out.println("Hello world - tu eksploracja");

    //Pobieranie danych
    String filename = "C:\\Program Files\\Weka-3-8\\data\\weather.numeric.arff";
    DataSource source = new DataSource(filename);
    Instances mojeDane = source.getDataSet();

    //Wywietlanie danych
    System.out.println("Dane: ");
    // System.out.println(mojeDane); //cao danych

    Instance wiersz0 = mojeDane.firstInstance();

    System.out.println("Pocztek " + mojeDane.firstInstance()); //pierwszy wiersz
    System.out.println("Koniec " + mojeDane.lastInstance()); //ostatni wiersz

    System.out.println("\nLiczba danych: " + mojeDane.numInstances());
    System.out.println("\nAtrybuty w liczbie: " + mojeDane.numAttributes());

    for (int i = 0; i < mojeDane.numAttributes(); i++) {
        System.out.println(i + ". " + mojeDane.attribute(i));
        Attribute atr = mojeDane.attribute(i);
        System.out.println(i + " " + atr.name());

        if (atr.isNominal()) {
            System.out.println("Typ danych nominalne");
        } else {
            System.out.println("Typ danych numeryczne");
        }
    }

    //Zapisywanie danych w posataci liczbowej
    System.out.println("Dane - jako liczby: ");
    System.out.println(Arrays.toString(wiersz0.toDoubleArray()));

}

From source file:GroupProject.DMChartUI.java

/**
* gets the user input from the string and turns it into a weka instance
* the instance is then returned to be classified
*
*///from   www  .  j a  v a  2s.c o m
private Instance getInstance(boolean rem) {
    String fileName = "tempInstance.csv";

    FileWriter fileWriter = null;
    try {
        fileWriter = new FileWriter(fileName);
        System.out.println("i found the tempInstance files");

        fileWriter.append(header.toString());

        //a string with commas in between each word
        //the first word should be: "0"
        System.out.println("Im goint to get the user string");
        String input_instance = getUserString();

        System.out.println("The user input:" + input_instance);
        fileWriter.append(input_instance);
        //add new line 
        fileWriter.append("\n");
        System.out.println("i got user input");
    } catch (Exception e) {
        System.out.println("Error in CsvFileWriter !!!");

        e.printStackTrace();
    } finally {
        try {
            fileWriter.flush();
            fileWriter.close();
        } catch (IOException e) {
            System.out.println("Error while flushing/closing fileWriter !!!");
            e.printStackTrace();
        }
    }

    String fileNameArff = "tempInstance.arff";

    CSVtoArff converter = new CSVtoArff();
    Instances students = null;
    Instances students2 = null;
    //load data into Instances 
    try {
        System.out.println("im going to convert the csv file ");
        converter.convert(fileName, fileNameArff);
        System.out.println("I converted the csv file");
    } catch (IOException ex) {
        Logger.getLogger(DMChartUI.class.getName()).log(Level.SEVERE, null, ex);
    }

    try {
        students = new Instances(new BufferedReader(new FileReader(fileNameArff)));
        //students2= new Instances(new BufferedReader(new FileReader(fileNameArff)));
    } catch (IOException ex) {
        Logger.getLogger(DMChartUI.class.getName()).log(Level.SEVERE, null, ex);
    }

    Remove remove = new Remove();
    int[] toremove = { 0, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17 };
    remove.setAttributeIndicesArray(toremove);

    try {
        remove.setInputFormat(students);
    } catch (Exception ex) {
        Logger.getLogger(DMChartUI.class.getName()).log(Level.SEVERE, null, ex);
    }

    Instances instNew = null;
    try {
        instNew = Filter.useFilter(students, remove);
    } catch (Exception ex) {
        Logger.getLogger(DMChartUI.class.getName()).log(Level.SEVERE, null, ex);
    }

    Instance result;
    if (rem) {
        result = instNew.lastInstance();
    } else
        result = students.lastInstance();

    System.out.println("this was the instance");
    System.out.println(result);
    return result;
}

From source file:imba.classifier.NBTubes.java

@Override
public double[] distributionForInstance(Instance instance) throws Exception {
    //Fungsi ini menentukan probabilitas setiap kelas instance untuk instance 
    //yang ada di parameter fungsi
    Instances temp = null;
    Instance p;/*  w  ww  .j  a v a  2 s .  com*/
    Filter f;
    double[] a = new double[infoClassifier.get(0).get(0).size()];
    int i, j, k, l, x, c;
    double t, prev;
    Enumeration n;
    boolean big;
    String val;
    String[] valMinMax;

    if (wasNumeric) {

        header_Instances.add(instance);

        f = new Normalize();
        try {
            f.setInputFormat(header_Instances);

            for (Instance i1 : header_Instances) {
                f.input(i1);
            }

            f.batchFinished();
        } catch (Exception ex) {
            Logger.getLogger(NBTubes.class.getName()).log(Level.SEVERE, null, ex);
        }

        temp = f.getOutputFormat();

        while ((p = f.output()) != null) {
            temp.add(p);
        }
    }

    f = new NumericToNominal();

    if (wasNumeric) {
        try {
            f.setInputFormat(temp);

            for (Instance i1 : temp) {
                f.input(i1);
            }

            f.batchFinished();
        } catch (Exception ex) {
            Logger.getLogger(NBTubes.class.getName()).log(Level.SEVERE, null, ex);
        }

        temp = null;
        temp = f.getOutputFormat();

        p = null;

        while ((p = f.output()) != null) {
            temp.add(p);
        }

        instance = temp.lastInstance();

        header_Instances.remove(header_Instances.size() - 1);
    } else {
        f.setInputFormat(header_Instances);

        f.input(instance);

        f.batchFinished();

        instance = f.output();
    }

    //Itung distribusi instance utk tiap kelas
    i = 0;
    while (i < (a.length)) {
        a[i] = (double) sumClass[i] / dataSize;

        j = 0;
        k = 0;
        while (j < infoClassifier.size()) {

            if (j == classIdx) {
                k++;
            }

            if (wasNumeric) {
                if (filter.equals("Discretize")) {
                    l = 0;
                    big = false;
                    while (l < dataset.attribute(k).numValues() && big == false) {
                        //parse
                        val = String.valueOf(dataset.attribute(k).value(l));
                        //System.out.println("k = " + k);
                        //System.out.println("nilai = " + instance.stringValue(k));
                        val = val.replaceAll("'", "");
                        val = val.replaceAll("\\(", "");
                        val = val.replaceAll("\\)", "");
                        val = val.replaceAll("]", "");

                        //System.out.println(val);

                        valMinMax = val.split("-");

                        //cocokin

                        if (valMinMax.length == 3) {
                            if (valMinMax[1].equals("inf")) {
                                valMinMax[1] = "0.0";
                            }
                            //System.out.println("Min = " + valMinMax[1]);
                            //System.out.println("Max = " + valMinMax[2]);
                            if (Double.valueOf(instance.stringValue(k)) > Double.valueOf(valMinMax[1]) && Double
                                    .valueOf(instance.stringValue(k)) <= Double.valueOf(valMinMax[2])) {
                                big = true;
                            }
                        } else {
                            if (valMinMax.length == 2) {
                                if (valMinMax[1].equals("inf")) {
                                    valMinMax[1] = "1.0";
                                }

                                if (Double.valueOf(instance.stringValue(k)) > Double.valueOf(valMinMax[0])
                                        && Double.valueOf(instance.stringValue(k)) <= Double
                                                .valueOf(valMinMax[1])) {
                                    big = true;
                                }
                            } else {
                                l = dataset.attribute(k).indexOfValue(instance.stringValue(k));
                                big = true;
                            }
                            //System.out.println("Min = " + valMinMax[0]);
                            //System.out.println("Max = " + valMinMax[1]);

                        }
                        l++;
                    }

                    x = l - 1;

                    //System.out.println("x = " + x);
                } else {
                    big = false;
                    l = 0;
                    n = dataset.attribute(k).enumerateValues();

                    t = 0;
                    prev = 0;
                    while (l < dataset.attribute(k).numValues() && big == false) {
                        t = Double.valueOf(n.nextElement().toString());

                        //System.out.println(prev + "   " + t);
                        if (Double.valueOf(instance.stringValue(k)) <= t) {
                            big = true;
                        } else {
                            prev = t;
                        }

                        l++;
                    }

                    if (big == true && t != Double.valueOf(instance.stringValue(k))) {
                        System.out.println(prev + "   " + Double.valueOf(instance.stringValue(k)) + "   " + t);
                    }
                    //x = l - 1;

                    if (classIdx < 2) {
                        c = 2;
                    } else {
                        c = 1;
                    }

                    if (big == true && l > c) {
                        if ((Double.valueOf(instance.stringValue(k)) - prev) <= (t
                                - Double.valueOf(instance.stringValue(k)))) {
                            x = l - 2;
                        } else {
                            x = l - 1;
                        }
                    } else {
                        x = l - 1;
                    }
                }

            } else {
                x = dataset.attribute(k).indexOfValue(instance.stringValue(k));
            }

            a[i] *= infoClassifier.get(j).get(x).get(i);

            k++;
            j++;
        }

        i++;
    }

    return a;
}

From source file:jjj.asap.sas.datasets.job.Import.java

License:Open Source License

private void buildDataset(int k, String input, String output) {

    if (IOUtils.exists(output)) {
        Job.log("NOTE", output + " already exists - nothing to do.");
        return;//from w  w  w.  j a  v  a  2  s . com
    }

    // create empty dataset
    final DatasetBuilder builder = new DatasetBuilder();
    builder.addVariable("id");
    if (Contest.isMultiChoice(k)) {
        builder.addNominalVariable("color", Contest.COLORS);
    }
    builder.addStringVariable("text");
    builder.addNominalVariable("score", Contest.getRubrics(k));
    Instances dataset = builder.getDataset(IOUtils.getName(output));

    // now add obs
    Iterator<String> it = new FileIterator(input);
    while (it.hasNext()) {
        // parse data
        String[] data = StringUtils.safeSplit(it.next(), "\t", 6);
        double id = Double.parseDouble(data[0]);
        String score = data[2];
        String color = data[4];
        String text = data[5];

        // add to dataset
        dataset.add(new DenseInstance(dataset.numAttributes()));
        Instance ob = dataset.lastInstance();
        ob.setValue(dataset.attribute("id"), id);
        if (Contest.isMultiChoice(k)) {
            ob.setValue(dataset.attribute("color"), color);
        }
        ob.setValue(dataset.attribute("text"), text);
        if ("?".equals(score)) {
            ob.setValue(dataset.attribute("score"), Utils.missingValue());
        } else {
            ob.setValue(dataset.attribute("score"), score);
        }
    }

    Dataset.save(output, dataset);
}

From source file:jjj.asap.sas.parser.job.ImportParserData.java

License:Open Source License

private void process(final String parent, int essaySet, Map<Double, List<String>> tags,
        Map<Double, List<String>> parseTrees, Map<Double, List<String>> depends) {

    // check if output exists
    boolean any = false;

    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-extra-stats.arff"))
        any = true;/* w  w w . j  av  a  2  s. c  om*/
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-pos-tags.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-parse-tree.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends0.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends1.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends2.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends3.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends4.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends5.arff"))
        any = true;
    if (!IOUtils.exists("work/datasets/" + parent + "/" + essaySet + "-depends6.arff"))
        any = true;

    if (!any) {
        Job.log("NOTE", "work/datasets/" + parent + "/" + essaySet
                + "-*.arff returns all required datasets - nothing to do");
        return;
    }

    // Load an existing dataset to use as a template.
    Instances dataset = Dataset.load("work/datasets/" + parent + "/" + essaySet + "-spell-checked.arff");

    // create the output datasets here. except for the extra statistics, 
    // the format is the same as 'dataset'.

    Instances tagsData = new Instances(dataset, 0);
    tagsData.setRelationName(essaySet + "-pos-tags.arff");
    Instances treeData = new Instances(dataset, 0);
    treeData.setRelationName(essaySet + "-parse-tree.arff");

    Instances dependsData[] = new Instances[7];
    for (int j = 0; j < 7; j++) {
        dependsData[j] = new Instances(dataset, 0);
        dependsData[j].setRelationName(essaySet + "-depends" + j + ".arff");
    }

    // extra stats
    DatasetBuilder builder = new DatasetBuilder();
    builder.addVariable("id");
    if (Contest.isMultiChoice(essaySet)) {
        builder.addNominalVariable("color", Contest.COLORS);
    }
    builder.addVariable("x_sent");
    builder.addVariable("x_para");
    builder.addVariable("x_length");
    builder.addVariable("x_words");
    builder.addVariable("x_unique_words");
    builder.addNominalVariable("score", Contest.getRubrics(essaySet));

    Instances extraStats = builder.getDataset(essaySet + "-extra-stats.arff");

    // now add rows for each instance

    for (int i = 0; i < dataset.numInstances(); i++) {

        // common variables
        Instance ob = dataset.instance(i);
        double id = ob.value(0);
        String y = ob.isMissing(dataset.numAttributes() - 1) ? null
                : ob.stringValue(dataset.numAttributes() - 1);
        String color = Contest.isMultiChoice(essaySet) ? ob.stringValue(dataset.attribute("color")) : null;
        String str = ob.stringValue(dataset.attribute("text"));

        //
        // Extra stats
        //

        int nSent = tags.containsKey(id) ? tags.get(id).size() : 0;
        int nPara = 0;
        for (int a = 0; a < str.length(); a++) {
            if (str.charAt(a) == '^')
                nPara++;
        }
        int nLength = str.length();
        int nWords = 0;
        int nUniqueWords = 0;
        String[] words = str.toLowerCase().split(" ");
        nWords = words.length;
        Set<String> u = new HashSet<String>();
        for (String w : words) {
            u.add(w);
        }
        nUniqueWords = u.size();

        extraStats.add(new DenseInstance(extraStats.numAttributes()));
        Instance extra = extraStats.lastInstance();
        extra.setValue(0, id);
        if (Contest.isMultiChoice(essaySet)) {
            extra.setValue(1, color);
        }

        extra.setValue(extraStats.attribute("x_sent"), nSent);
        extra.setValue(extraStats.attribute("x_para"), nPara);
        extra.setValue(extraStats.attribute("x_length"), nLength);
        extra.setValue(extraStats.attribute("x_words"), nWords);
        extra.setValue(extraStats.attribute("x_unique_words"), nUniqueWords);

        if (y == null)
            extra.setValue(extraStats.numAttributes() - 1, Utils.missingValue());
        else
            extra.setValue(extraStats.numAttributes() - 1, y);

        //
        // POS tags
        //

        String tagsText = "";
        List<String> tagsList = tags.get(id);
        if (tagsList == null || tagsList.isEmpty()) {
            Job.log("WARNING", "no tags for " + id);
            tagsText = "x";
        } else {
            for (String tagsItem : tagsList) {
                tagsText += tagsItem;
            }
        }

        tagsData.add(new DenseInstance(ob.numAttributes()));
        Instance tagsOb = tagsData.lastInstance();
        tagsOb.setValue(0, id);
        if (Contest.isMultiChoice(essaySet)) {
            tagsOb.setValue(1, color);
            tagsOb.setValue(2, tagsText.trim());
            if (y == null) {
                tagsOb.setValue(3, Utils.missingValue());
            } else {
                tagsOb.setValue(3, y);
            }
        } else {
            tagsOb.setValue(1, tagsText.trim());
            if (y == null) {
                tagsOb.setValue(2, Utils.missingValue());
            } else {
                tagsOb.setValue(2, y);
            }
        }

        //
        // Parse Tree
        //

        String treeText = "";
        List<String> treeList = parseTrees.get(id);
        if (treeList == null || treeList.isEmpty()) {
            Job.log("WARNING", "no parse tree for " + id);
            treeText = "x";
        } else {
            for (String treeItem : treeList) {
                treeText += treeItem;
            }
        }

        treeData.add(new DenseInstance(ob.numAttributes()));
        Instance treeOb = treeData.lastInstance();
        treeOb.setValue(0, id);
        if (Contest.isMultiChoice(essaySet)) {
            treeOb.setValue(1, color);
            treeOb.setValue(2, treeText.trim());
            if (y == null) {
                treeOb.setValue(3, Utils.missingValue());
            } else {
                treeOb.setValue(3, y);
            }
        } else {
            treeOb.setValue(1, treeText.trim());
            if (y == null) {
                treeOb.setValue(2, Utils.missingValue());
            } else {
                treeOb.setValue(2, y);
            }
        }

        //
        // Depends data
        //

        for (int j = 0; j < 7; j++) {

            String text = "";
            List<String> list = depends.get(id);
            if (list == null || list.isEmpty()) {
                Job.log("WARNING", "no depends for " + id);
                text = "x";
            } else {
                for (String item : list) {
                    String[] term = StringUtils.safeSplit(item, "/", 3);
                    switch (j) {
                    case 0:
                        text += item;
                        break;
                    case 1:
                        text += term[1] + "/" + term[2];
                        break;
                    case 2:
                        text += term[0] + "/" + term[2];
                        break;
                    case 3:
                        text += term[0] + "/" + term[1];
                        break;
                    case 4:
                        text += term[0];
                        break;
                    case 5:
                        text += term[1];
                        break;
                    case 6:
                        text += term[2];
                        break;
                    }
                    text += " ";
                }
            }

            dependsData[j].add(new DenseInstance(ob.numAttributes()));
            Instance dependsOb = dependsData[j].lastInstance();
            dependsOb.setValue(0, id);
            if (Contest.isMultiChoice(essaySet)) {
                dependsOb.setValue(1, color);
                dependsOb.setValue(2, text.trim());
                if (y == null) {
                    dependsOb.setValue(3, Utils.missingValue());
                } else {
                    dependsOb.setValue(3, y);
                }
            } else {
                dependsOb.setValue(1, text.trim());
                if (y == null) {
                    dependsOb.setValue(2, Utils.missingValue());
                } else {
                    dependsOb.setValue(2, y);
                }
            }

        } // j
    } // dataset

    // Now save the new datasets

    Dataset.save("work/datasets/" + parent + "/" + tagsData.relationName(), tagsData);
    Dataset.save("work/datasets/" + parent + "/" + treeData.relationName(), treeData);
    for (int j = 0; j < 7; j++) {
        Dataset.save("work/datasets/" + parent + "/" + dependsData[j].relationName(), dependsData[j]);
    }
    Dataset.save("work/datasets/" + parent + "/" + extraStats.relationName(), extraStats);

}

From source file:meka.classifiers.multilabel.cc.CNode.java

License:Open Source License

/**
 * Main - run some tests.// w w  w. j a v a  2  s  . c o m
 */
public static void main(String args[]) throws Exception {
    Instances D = new Instances(new FileReader(args[0]));
    Instance x = D.lastInstance();
    D.remove(D.numInstances() - 1);
    int L = Integer.parseInt(args[1]);
    D.setClassIndex(L);
    double y[] = new double[L];
    Random r = new Random();
    int s[] = new int[] { 1, 0, 2 };
    int PA_J[][] = new int[][] { {}, {}, { 0, 1 }, };

    //MLUtils.randomize(s,r);
    // MUST GO IN TREE ORDER !!
    for (int j : s) {
        int pa_j[] = PA_J[j];
        System.out.println("PARENTS = " + Arrays.toString(pa_j));
        //MLUtils.randomize(pa_j,r);
        System.out.println("**** TRAINING ***");
        CNode n = new CNode(j, null, pa_j);
        n.build(D, new SMO());
        /*
         */
        //Instances D_ = n.transform(D);
        //n.T = D_;
        System.out.println("============== D_" + j + " / class = " + n.T.classIndex() + " =");
        System.out.println("" + n.T);
        System.out.println("**** TESTING ****");
        /*
        Instance x_ = MLUtils.setTemplate(x,(Instance)D_.firstInstance().copy(),D_);
        for(int pa : pa_j) {
           //System.out.println(""+map[pa]);
           x_.setValue(n.map[pa],y[pa]);
        }
        //x_.setDataset(T);
        x_.setClassMissing();
         */
        //n.T = D_;
        Instance x_ = n.transform(x, y);
        System.out.println("" + x_);
        y[j] = 1;
    }
}