Example usage for weka.core Instances Instances

List of usage examples for weka.core Instances Instances

Introduction

In this page you can find the example usage for weka.core Instances Instances.

Prototype

public Instances(Instances dataset, int capacity) 

Source Link

Document

Constructor creating an empty set of instances.

Usage

From source file:dkpro.similarity.experiments.sts2013.util.Evaluator.java

License:Open Source License

public static void runLinearRegressionCV(Mode mode, Dataset... datasets) throws Exception {
    for (Dataset dataset : datasets) {
        // Set parameters
        int folds = 10;
        Classifier baseClassifier = new LinearRegression();

        // Set up the random number generator
        long seed = new Date().getTime();
        Random random = new Random(seed);

        // Add IDs to the instances
        AddID.main(new String[] { "-i",
                MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".arff", "-o",
                MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString()
                        + "-plusIDs.arff" });
        Instances data = DataSource.read(
                MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + "-plusIDs.arff");
        data.setClassIndex(data.numAttributes() - 1);

        // Instantiate the Remove filter
        Remove removeIDFilter = new Remove();
        removeIDFilter.setAttributeIndices("first");

        // Randomize the data
        data.randomize(random);// w w w .  ja v a 2 s. co m

        // Perform cross-validation
        Instances predictedData = null;
        Evaluation eval = new Evaluation(data);

        for (int n = 0; n < folds; n++) {
            Instances train = data.trainCV(folds, n, random);
            Instances test = data.testCV(folds, n);

            // Apply log filter
            Filter logFilter = new LogFilter();
            logFilter.setInputFormat(train);
            train = Filter.useFilter(train, logFilter);
            logFilter.setInputFormat(test);
            test = Filter.useFilter(test, logFilter);

            // Copy the classifier
            Classifier classifier = AbstractClassifier.makeCopy(baseClassifier);

            // Instantiate the FilteredClassifier
            FilteredClassifier filteredClassifier = new FilteredClassifier();
            filteredClassifier.setFilter(removeIDFilter);
            filteredClassifier.setClassifier(classifier);

            // Build the classifier
            filteredClassifier.buildClassifier(train);

            // Evaluate
            eval.evaluateModel(classifier, test);

            // Add predictions
            AddClassification filter = new AddClassification();
            filter.setClassifier(classifier);
            filter.setOutputClassification(true);
            filter.setOutputDistribution(false);
            filter.setOutputErrorFlag(true);
            filter.setInputFormat(train);
            Filter.useFilter(train, filter); // trains the classifier

            Instances pred = Filter.useFilter(test, filter); // performs predictions on test set
            if (predictedData == null) {
                predictedData = new Instances(pred, 0);
            }
            for (int j = 0; j < pred.numInstances(); j++) {
                predictedData.add(pred.instance(j));
            }
        }

        // Prepare output scores
        double[] scores = new double[predictedData.numInstances()];

        for (Instance predInst : predictedData) {
            int id = new Double(predInst.value(predInst.attribute(0))).intValue() - 1;

            int valueIdx = predictedData.numAttributes() - 2;

            double value = predInst.value(predInst.attribute(valueIdx));

            scores[id] = value;

            // Limit to interval [0;5]
            if (scores[id] > 5.0) {
                scores[id] = 5.0;
            }
            if (scores[id] < 0.0) {
                scores[id] = 0.0;
            }
        }

        // Output
        StringBuilder sb = new StringBuilder();
        for (Double score : scores) {
            sb.append(score.toString() + LF);
        }

        FileUtils.writeStringToFile(
                new File(OUTPUT_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".csv"),
                sb.toString());
    }
}

From source file:dkpro.similarity.experiments.sts2013baseline.util.Evaluator.java

License:Open Source License

public static void runLinearRegressionCV(Mode mode, Dataset... datasets) throws Exception {
    for (Dataset dataset : datasets) {
        // Set parameters
        int folds = 10;
        Classifier baseClassifier = new LinearRegression();

        // Set up the random number generator
        long seed = new Date().getTime();
        Random random = new Random(seed);

        // Add IDs to the instances
        AddID.main(new String[] { "-i",
                MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".arff", "-o",
                MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString()
                        + "-plusIDs.arff" });

        String location = MODELS_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString()
                + "-plusIDs.arff";

        Instances data = DataSource.read(location);

        if (data == null) {
            throw new IOException("Could not load data from: " + location);
        }//from  w  w w .  java  2s  .com

        data.setClassIndex(data.numAttributes() - 1);

        // Instantiate the Remove filter
        Remove removeIDFilter = new Remove();
        removeIDFilter.setAttributeIndices("first");

        // Randomize the data
        data.randomize(random);

        // Perform cross-validation
        Instances predictedData = null;
        Evaluation eval = new Evaluation(data);

        for (int n = 0; n < folds; n++) {
            Instances train = data.trainCV(folds, n, random);
            Instances test = data.testCV(folds, n);

            // Apply log filter
            Filter logFilter = new LogFilter();
            logFilter.setInputFormat(train);
            train = Filter.useFilter(train, logFilter);
            logFilter.setInputFormat(test);
            test = Filter.useFilter(test, logFilter);

            // Copy the classifier
            Classifier classifier = AbstractClassifier.makeCopy(baseClassifier);

            // Instantiate the FilteredClassifier
            FilteredClassifier filteredClassifier = new FilteredClassifier();
            filteredClassifier.setFilter(removeIDFilter);
            filteredClassifier.setClassifier(classifier);

            // Build the classifier
            filteredClassifier.buildClassifier(train);

            // Evaluate
            eval.evaluateModel(classifier, test);

            // Add predictions
            AddClassification filter = new AddClassification();
            filter.setClassifier(classifier);
            filter.setOutputClassification(true);
            filter.setOutputDistribution(false);
            filter.setOutputErrorFlag(true);
            filter.setInputFormat(train);
            Filter.useFilter(train, filter); // trains the classifier

            Instances pred = Filter.useFilter(test, filter); // performs predictions on test set
            if (predictedData == null) {
                predictedData = new Instances(pred, 0);
            }
            for (int j = 0; j < pred.numInstances(); j++) {
                predictedData.add(pred.instance(j));
            }
        }

        // Prepare output scores
        double[] scores = new double[predictedData.numInstances()];

        for (Instance predInst : predictedData) {
            int id = new Double(predInst.value(predInst.attribute(0))).intValue() - 1;

            int valueIdx = predictedData.numAttributes() - 2;

            double value = predInst.value(predInst.attribute(valueIdx));

            scores[id] = value;

            // Limit to interval [0;5]
            if (scores[id] > 5.0) {
                scores[id] = 5.0;
            }
            if (scores[id] < 0.0) {
                scores[id] = 0.0;
            }
        }

        // Output
        StringBuilder sb = new StringBuilder();
        for (Double score : scores) {
            sb.append(score.toString() + LF);
        }

        FileUtils.writeStringToFile(
                new File(OUTPUT_DIR + "/" + mode.toString().toLowerCase() + "/" + dataset.toString() + ".csv"),
                sb.toString());
    }
}

From source file:edu.cmu.lti.oaqa.baseqa.providers.ml.classifiers.WekaProvider.java

License:Apache License

@Override
public Map<String, Double> infer(Map<String, Double> features) throws AnalysisEngineProcessException {
    Instances testInstances = new Instances(datasetSchema, 1);
    Instance instance = newInstance(features, null, 1.0, testInstances);
    double[] probs;
    try {//from   ww  w.  j a v a  2  s.c  om
        probs = classifier.distributionForInstance(instance);
    } catch (Exception e) {
        throw new AnalysisEngineProcessException(e);
    }
    return IntStream.range(0, probs.length).boxed()
            .collect(toMap(i -> datasetSchema.classAttribute().value(i), i -> probs[i]));
}

From source file:edu.oregonstate.eecs.mcplan.abstraction.EvaluateSimilarityFunction.java

License:Open Source License

/**
 * @param args//www .j a  v  a 2 s.  c  o  m
 * @throws IOException
 * @throws FileNotFoundException
 */
public static void main(final String[] args) throws FileNotFoundException, IOException {
    final String experiment_file = args[0];
    final File root_directory;
    if (args.length > 1) {
        root_directory = new File(args[1]);
    } else {
        root_directory = new File(".");
    }
    final CsvConfigurationParser csv_config = new CsvConfigurationParser(new FileReader(experiment_file));
    final String experiment_name = FilenameUtils.getBaseName(experiment_file);

    final File expr_directory = new File(root_directory, experiment_name);
    expr_directory.mkdirs();

    final Csv.Writer csv = new Csv.Writer(
            new PrintStream(new FileOutputStream(new File(expr_directory, "results.csv"))));
    final String[] parameter_headers = new String[] { "kpca.kernel", "kpca.rbf.sigma",
            "kpca.random_forest.Ntrees", "kpca.random_forest.max_depth", "kpca.Nbases", "multiclass.classifier",
            "multiclass.random_forest.Ntrees", "multiclass.random_forest.max_depth",
            "pairwise_classifier.max_branching", "training.label_noise" };
    csv.cell("domain").cell("abstraction");
    for (final String p : parameter_headers) {
        csv.cell(p);
    }
    csv.cell("Ntrain").cell("Ntest").cell("ami.mean").cell("ami.variance").cell("ami.confidence").newline();

    for (int expr = 0; expr < csv_config.size(); ++expr) {
        try {
            final KeyValueStore expr_config = csv_config.get(expr);
            final Configuration config = new Configuration(root_directory.getPath(), expr_directory.getName(),
                    expr_config);

            System.out.println("[Loading '" + config.training_data_single + "']");
            final Instances single = WekaUtil
                    .readLabeledDataset(new File(root_directory, config.training_data_single + ".arff"));

            final Instances train = new Instances(single, 0);
            final int[] idx = Fn.range(0, single.size());
            int instance_counter = 0;
            Fn.shuffle(config.rng, idx);
            final int Ntrain = config.getInt("Ntrain_games"); // TODO: Rename?
            final double label_noise = config.getDouble("training.label_noise");
            final int Nlabels = train.classAttribute().numValues();
            assert (Nlabels > 0);
            for (int i = 0; i < Ntrain; ++i) {
                final Instance inst = single.get(idx[instance_counter++]);
                if (label_noise > 0 && config.rng.nextDouble() < label_noise) {
                    int noisy_label = 0;
                    do {
                        noisy_label = config.rng.nextInt(Nlabels);
                    } while (noisy_label == (int) inst.classValue());
                    System.out.println("Noisy label (" + inst.classValue() + " -> " + noisy_label + ")");
                    inst.setClassValue(noisy_label);
                }
                train.add(inst);
                inst.setDataset(train);
            }

            final Fn.Function2<Boolean, Instance, Instance> plausible_p = createPlausiblePredicate(config);

            final int Ntest = config.Ntest_games;
            int Ntest_added = 0;
            final ArrayList<Instances> tests = new ArrayList<Instances>();
            while (instance_counter < single.size() && Ntest_added < Ntest) {
                final Instance inst = single.get(idx[instance_counter++]);
                boolean found = false;
                for (final Instances test : tests) {
                    // Note that 'plausible_p' should be transitive
                    if (plausible_p.apply(inst, test.get(0))) {
                        WekaUtil.addInstance(test, inst);
                        if (test.size() == 30) {
                            Ntest_added += test.size();
                        } else if (test.size() > 30) {
                            Ntest_added += 1;
                        }
                        found = true;
                        break;
                    }
                }

                if (!found) {
                    final Instances test = new Instances(single, 0);
                    WekaUtil.addInstance(test, inst);
                    tests.add(test);
                }
            }
            final Iterator<Instances> test_itr = tests.iterator();
            while (test_itr.hasNext()) {
                if (test_itr.next().size() < 30) {
                    test_itr.remove();
                }
            }
            System.out.println("=== tests.size() = " + tests.size());
            System.out.println("=== Ntest_added = " + Ntest_added);

            System.out.println("[Training]");
            final Evaluator evaluator = createEvaluator(config, train);
            //            final Instances transformed_test = evaluator.prepareInstances( test );

            System.out.println("[Evaluating]");

            final int Nxval = evaluator.isSensitiveToOrdering() ? 10 : 1;
            final MeanVarianceAccumulator ami = new MeanVarianceAccumulator();

            final MeanVarianceAccumulator errors = new MeanVarianceAccumulator();
            final MeanVarianceAccumulator relative_error = new MeanVarianceAccumulator();

            int c = 0;
            for (int xval = 0; xval < Nxval; ++xval) {
                for (final Instances test : tests) {
                    // TODO: Debugging
                    WekaUtil.writeDataset(new File(config.root_directory), "test_" + (c++), test);

                    //               transformed_test.randomize( new RandomAdaptor( config.rng ) );
                    //               final ClusterContingencyTable ct = evaluator.evaluate( transformed_test );
                    test.randomize(new RandomAdaptor(config.rng));
                    final ClusterContingencyTable ct = evaluator.evaluate(test);
                    System.out.println(ct);

                    int Nerrors = 0;
                    final MeanVarianceAccumulator mv = new MeanVarianceAccumulator();
                    for (int i = 0; i < ct.R; ++i) {
                        final int max = Fn.max(ct.n[i]);
                        Nerrors += (ct.a[i] - max);
                        mv.add(((double) ct.a[i]) / ct.N * Nerrors / ct.a[i]);
                    }
                    errors.add(Nerrors);
                    relative_error.add(mv.mean());

                    System.out.println("exemplar: " + test.get(0));
                    System.out.println("Nerrors = " + Nerrors);
                    final PrintStream ct_out = new PrintStream(
                            new FileOutputStream(new File(expr_directory, "ct_" + expr + "_" + xval + ".csv")));
                    ct.writeCsv(ct_out);
                    ct_out.close();
                    final double ct_ami = ct.adjustedMutualInformation_max();
                    if (Double.isNaN(ct_ami)) {
                        System.out.println("! ct_ami = NaN");
                    } else {
                        ami.add(ct_ami);
                    }
                    System.out.println();
                }
            }
            System.out.println("errors = " + errors.mean() + " (" + errors.confidence() + ")");
            System.out.println(
                    "relative_error = " + relative_error.mean() + " (" + relative_error.confidence() + ")");
            System.out.println("AMI_max = " + ami.mean() + " (" + ami.confidence() + ")");

            csv.cell(config.domain).cell(config.get("abstraction.discovery"));
            for (final String p : parameter_headers) {
                csv.cell(config.get(p));
            }
            csv.cell(Ntrain).cell(Ntest).cell(ami.mean()).cell(ami.variance()).cell(ami.confidence()).newline();
        } catch (final Exception ex) {
            ex.printStackTrace();
        }
    }
}

From source file:edu.oregonstate.eecs.mcplan.abstraction.MulticlassRepresenter.java

License:Open Source License

private MulticlassRepresenter(final MulticlassRepresenter<S> that) {
    classifier_ = that.classifier_;//from   w w w  .  ja v a 2  s.c om
    headers_ = new Instances(that.headers_, 0);
    this.Nclasses = that.Nclasses;
}