Example usage for weka.core Instances instance

List of usage examples for weka.core Instances instance

Introduction

In this page you can find the example usage for weka.core Instances instance.

Prototype



publicInstance instance(int index) 

Source Link

Document

Returns the instance at the given position.

Usage

From source file:WLSVM.java

License:Open Source License

/**
 * converts an ARFF dataset into sparse format
 * /*w w  w  .j av  a2  s. c  o  m*/
 * @param instances
 * @return
 */
protected Vector DataToSparse(Instances data) {
    Vector sparse = new Vector(data.numInstances() + 1);

    for (int i = 0; i < data.numInstances(); i++) { // for each instance
        sparse.add(InstanceToSparse(data.instance(i)));
    }
    return sparse;
}

From source file:classifyfromimage.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
    this.name3 = IJ.getImage().getTitle();
    this.name4 = this.name3.replaceFirst("[.][^.]+$", "");
    System.out.println("hola " + this.name4);
    selectWindow(this.name3);
    System.out.println(this.name4);
    System.out.println(this.name3);
    RoiManager rm = RoiManager.getInstance();
    IJ.run("Duplicate...", this.name3);
    IJ.run("Set Measurements...", "area perimeter fit shape limit scientific redirect=None decimal=5");
    selectWindow(this.name3);
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Enhance Contrast...", "saturated=25 equalize");
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Convolve...",
            "text1=[-1 -3 -4 -3 -1\n-3 0 6 0 -3\n-4 6 50 6 -4\n-3 0 6 0 -3\n-1 -3 -4 -3 -1\n] normalize");
    IJ.run("8-bit", "");
    IJ.run("Restore Selection", "");
    IJ.run("Make Binary", "");
    Prefs.blackBackground = false;/*from w  ww. j  a  va 2  s .c  om*/
    IJ.run("Convert to Mask", "");
    IJ.run("Restore Selection", "");
    this.valor1 = this.interval3.getText();
    this.valor2 = this.interval4.getText();
    System.out.println("VECTOR-> punctua: " + this.valor1 + " " + this.valor2);
    this.text = "size=" + this.valor1 + "-" + this.valor2
            + " pixel show=Outlines display include summarize add";
    IJ.run("Analyze Particles...", this.text);
    IJ.saveAs("tif", this.name3 + "_processed");
    String dest_filename1, dest_filename2, full;
    selectWindow("Results");
    //dest_filename1 = this.name2 + "_complete.txt";
    dest_filename2 = this.name3 + "_complete.csv";
    //IJ.saveAs("Results", prova + File.separator + dest_filename1);
    IJ.run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row");
    //IJ.saveAs("Results", dir + File.separator + dest_filename2);
    IJ.saveAs("Results", this.name3 + "_complete.csv");
    IJ.run("Restore Selection");
    IJ.run("Clear Results");

    //txtarea.setText("Converting, please wait...  ");
    try {
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name3 + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }
    //txtdata2.setText(this.name3);

    //txtarea.setText("Succesfully converted " + this.name3);
    //txtarea.setText("Analysing your data, please wait...  ");
    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        this.txtarea2.setText(
                "Your file:" + this.name3 + ".arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        A_MachineLearning nf1 = new A_MachineLearning();
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        nf1.setVisible(true);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    //IJ.RoiManager("Delete");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }

    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");
    setVisible(false);
    dispose();// TODO add your handling code here:

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:DocClassifier.java

public Evaluation classify(Classifier classifier) throws Exception {
    docPredList.clear();//  w ww.  j  ava2  s .  co  m
    Instances testInstances = createInstances(testFiles);
    Instances trainInstances = createInstances(trainFiles);
    classifier.buildClassifier(trainInstances);
    Evaluation ev = new Evaluation(trainInstances);
    for (int i = 0; i < testInstances.numInstances(); ++i) {
        Instance inst = testInstances.instance(i);
        double pred = ev.evaluateModelOnceAndRecordPrediction(classifier, inst);
        docPredList.add(testFiles[i].getName() + "\t=>\t" + inst.classAttribute().value((int) pred));
    }
    return ev;
}

From source file:PrincipalComponents.java

License:Open Source License

/**
 * Gets the transformed training data.//w  w w . ja v  a2  s  .c  om
 *
 * @return the transformed training data
 * @throws Exception if transformed data can't be returned
 */
@Override
public Instances transformedData(Instances data) throws Exception {
    if (m_eigenvalues == null) {
        throw new Exception("Principal components hasn't been built yet");
    }

    Instances output = null;

    if (m_transBackToOriginal) {
        output = new Instances(m_originalSpaceFormat);
    } else {
        output = new Instances(m_transformedFormat);
    }
    for (int i = 0; i < data.numInstances(); i++) {
        Instance converted = convertInstance(data.instance(i));
        output.add(converted);
    }

    return output;
}

From source file:BaggingImprove.java

/**
 * Bagging method.//w w  w  .j  av  a2  s .  c  o m
 *
 * @param data the training data to be used for generating the bagged
 * classifier.
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    data = new Instances(data);
    //data.deleteWithMissingClass();

    super.buildClassifier(data);

    if (m_CalcOutOfBag && (m_BagSizePercent != 100)) {
        throw new IllegalArgumentException(
                "Bag size needs to be 100% if " + "out-of-bag error is to be calculated!");
    }
    //+
    System.out.println("Classifier length" + m_Classifiers.length);

    int bagSize = data.numInstances() * m_BagSizePercent / 100;
    //+
    System.out.println("Bag Size " + bagSize);

    Random random = new Random(m_Seed);

    boolean[][] inBag = null;
    if (m_CalcOutOfBag) {
        inBag = new boolean[m_Classifiers.length][];
    }

    //+
    //inisialisasi nama penamaan model
    BufferedWriter writer = new BufferedWriter(new FileWriter("Bootstrap.txt"));

    for (int j = 0; j < m_Classifiers.length; j++) {

        Instances bagData = null;

        // create the in-bag dataset
        if (m_CalcOutOfBag) {
            inBag[j] = new boolean[data.numInstances()];

            //System.out.println("Inbag1 " + inBag[0][1]);
            //bagData = resampleWithWeights(data, random, inBag[j]);
            bagData = data.resampleWithWeights(random, inBag[j]);
            //System.out.println("num after resample " + bagData.numInstances());
            //+
            //                for (int k = 0; k < bagData.numInstances(); k++) {
            //                    System.out.println("Bag Data after resample [calc out bag]" + bagData.instance(k));
            //                }

        } else {
            //+
            System.out.println("Not m_Calc out of bag");
            System.out.println("Please configure code inside!");

            bagData = data.resampleWithWeights(random);
            if (bagSize < data.numInstances()) {
                bagData.randomize(random);
                Instances newBagData = new Instances(bagData, 0, bagSize);
                bagData = newBagData;
            }
        }

        if (m_Classifier instanceof Randomizable) {
            //+
            System.out.println("Randomizable");
            ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt());
        }

        //write bootstrap into file
        writer.write("Bootstrap " + j);
        writer.newLine();
        writer.write(bagData.toString());
        writer.newLine();

        System.out.println("Berhasil menyimpan bootstrap ke file ");

        System.out.println("Bootstrap " + j + 1);
        //            textarea.append("\nBootsrap " + (j + 1));
        //System.out.println("num instance kedua kali "+bagData.numInstances());

        for (int b = 1; b < bagData.numInstances(); b++) {
            System.out.println("" + bagData.instance(b));
            //                textarea.append("\n" + bagData.instance(b));
        }
        //            //+

        // build the classifier
        m_Classifiers[j].buildClassifier(bagData);
        //            //+
        //            
        //            SerializationHelper serialization = new SerializationHelper();
        //            serialization.write("KnnData"+model+".model", m_Classifiers[j]);
        //            System.out.println("Finish write into model");
        //            model++;
    }

    writer.flush();
    writer.close();
    // calc OOB error?
    if (getCalcOutOfBag()) {
        double outOfBagCount = 0.0;
        double errorSum = 0.0;
        boolean numeric = data.classAttribute().isNumeric();

        for (int i = 0; i < data.numInstances(); i++) {
            double vote;
            double[] votes;
            if (numeric) {
                votes = new double[1];
            } else {
                votes = new double[data.numClasses()];
            }

            // determine predictions for instance
            int voteCount = 0;
            for (int j = 0; j < m_Classifiers.length; j++) {
                if (inBag[j][i]) {
                    continue;
                }
                voteCount++;
                // double pred = m_Classifiers[j].classifyInstance(data.instance(i));
                if (numeric) {
                    // votes[0] += pred;
                    votes[0] = m_Classifiers[j].classifyInstance(data.instance(i));
                } else {
                    // votes[(int) pred]++;
                    double[] newProbs = m_Classifiers[j].distributionForInstance(data.instance(i));
                    //-
                    //                        for(double a : newProbs)
                    //                        {
                    //                            System.out.println("Double new probs %.f "+a);
                    //                        }
                    // average the probability estimates
                    for (int k = 0; k < newProbs.length; k++) {
                        votes[k] += newProbs[k];
                    }

                }
            }
            System.out.println("Vote count %d" + voteCount);

            // "vote"
            if (numeric) {
                vote = votes[0];
                if (voteCount > 0) {
                    vote /= voteCount; // average
                }
            } else {
                if (Utils.eq(Utils.sum(votes), 0)) {
                } else {
                    Utils.normalize(votes);

                }
                vote = Utils.maxIndex(votes); // predicted class
                //-
                System.out.println("Vote " + vote);

            }

            // error for instance
            outOfBagCount += data.instance(i).weight();
            if (numeric) {
                errorSum += StrictMath.abs(vote - data.instance(i).classValue()) * data.instance(i).weight();
            } else if (vote != data.instance(i).classValue()) {
                //+
                System.out.println("Vote terakhir" + data.instance(i).classValue());
                errorSum += data.instance(i).weight();
            }
        }

        m_OutOfBagError = errorSum / outOfBagCount;
    } else {
        m_OutOfBagError = 0;
    }
}

From source file:REPTree.java

License:Open Source License

/**
 * Builds classifier.//from  w w w .  j ava 2  s.  co  m
 * 
 * @param data the data to train with
 * @throws Exception if building fails
 */
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    data = new Instances(data);
    data.deleteWithMissingClass();

    Random random = new Random(m_Seed);

    m_zeroR = null;
    if (data.numAttributes() == 1) {
        m_zeroR = new ZeroR();
        m_zeroR.buildClassifier(data);
        return;
    }

    // Randomize and stratify
    data.randomize(random);
    if (data.classAttribute().isNominal()) {
        data.stratify(m_NumFolds);
    }

    // Split data into training and pruning set
    Instances train = null;
    Instances prune = null;
    if (!m_NoPruning) {
        train = data.trainCV(m_NumFolds, 0, random);
        prune = data.testCV(m_NumFolds, 0);
    } else {
        train = data;
    }

    // Create array of sorted indices and weights
    int[][][] sortedIndices = new int[1][train.numAttributes()][0];
    double[][][] weights = new double[1][train.numAttributes()][0];
    double[] vals = new double[train.numInstances()];
    for (int j = 0; j < train.numAttributes(); j++) {
        if (j != train.classIndex()) {
            weights[0][j] = new double[train.numInstances()];
            if (train.attribute(j).isNominal()) {

                // Handling nominal attributes. Putting indices of
                // instances with missing values at the end.
                sortedIndices[0][j] = new int[train.numInstances()];
                int count = 0;
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (!inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
            } else {

                // Sorted indices are computed for numeric attributes
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    vals[i] = inst.value(j);
                }
                sortedIndices[0][j] = Utils.sort(vals);
                for (int i = 0; i < train.numInstances(); i++) {
                    weights[0][j][i] = train.instance(sortedIndices[0][j][i]).weight();
                }
            }
        }
    }

    // Compute initial class counts
    double[] classProbs = new double[train.numClasses()];
    double totalWeight = 0, totalSumSquared = 0;
    for (int i = 0; i < train.numInstances(); i++) {
        Instance inst = train.instance(i);
        if (data.classAttribute().isNominal()) {
            classProbs[(int) inst.classValue()] += inst.weight();
            totalWeight += inst.weight();
        } else {
            classProbs[0] += inst.classValue() * inst.weight();
            totalSumSquared += inst.classValue() * inst.classValue() * inst.weight();
            totalWeight += inst.weight();
        }
    }
    m_Tree = new Tree();
    double trainVariance = 0;
    if (data.classAttribute().isNumeric()) {
        trainVariance = m_Tree.singleVariance(classProbs[0], totalSumSquared, totalWeight) / totalWeight;
        classProbs[0] /= totalWeight;
    }

    // Build tree
    m_Tree.buildTree(sortedIndices, weights, train, totalWeight, classProbs, new Instances(train, 0), m_MinNum,
            m_MinVarianceProp * trainVariance, 0, m_MaxDepth);

    // Insert pruning data and perform reduced error pruning
    if (!m_NoPruning) {
        m_Tree.insertHoldOutSet(prune);
        m_Tree.reducedErrorPrune();
        m_Tree.backfitHoldOutSet();
    }
}

From source file:A_MachineLearning.java

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton7ActionPerformed
    Instances data;/*w ww.  j  av  a2 s.c om*/
    try {
        data = new Instances(new BufferedReader(new FileReader(this.file2 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.file2 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        txtresults1.setText(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by: \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.showMessage("analysing complete ");
}

From source file:TreeNode.java

License:Common Public License

public double calculateEntropy(Instances instances) {
    if (instances.numClasses() <= 1)
        return 0;
    else {/*ww w  .  ja  va 2  s  .c o m*/
        int numInstances = instances.numInstances();
        int numClasses = instances.numClasses();

        //Count how many in each class
        int[] classCounts = new int[numClasses];
        for (int i = 0; i < numInstances; i++) {
            classCounts[(int) instances.instance(i).classValue()]++;
        }

        //Calculate the entropy
        double entropy = 0;
        double quotient;
        for (int i = 0; i < numClasses; i++) {
            double result;
            if (classCounts[i] == 0) {
                result = 0;
            } else {
                quotient = (double) classCounts[i] / (double) numInstances;
                result = (quotient * Math.log(quotient) / Math.log(numClasses));
                assert (Double.isNaN(result) && result <= 1);
            }

            entropy = entropy - result;
        }
        return entropy;
    }
}

From source file:Pair.java

License:Open Source License

private void doCV(Instances targetData) throws Exception {
    System.out.println();/*  w  w w  .j a  v a 2  s  . c o  m*/
    System.out.flush();
    int numSourceInstances = m_SourceInstances.numInstances();
    int numInstances = targetData.numInstances() + numSourceInstances;
    numTargetInstances = numInstances - numSourceInstances;
    double weightSource, weightTarget;
    double initialSourceFraction;
    double[] weights = new double[numInstances];
    Random randomInstance = new Random(1);

    Instances data = new Instances(m_SourceInstances, 0, numSourceInstances);
    // Now add the target data, shallow copying the instances as they are added
    // so it doesn't mess up the weights for anyone else
    Enumeration enumer = targetData.enumerateInstances();
    while (enumer.hasMoreElements()) {
        Instance instance = (Instance) enumer.nextElement();
        data.add(instance);
    }

    if (sourceRatio < 0) { //weight all equally
        weightSource = weightTarget = 1.0/*/numInstances*/;
        initialSourceFraction = numSourceInstances / (double) numInstances;
    } else {
        double totalWeight = 1 + sourceRatio;
        weightSource = sourceRatio / totalWeight/*/numSourceInstances*/;
        weightTarget = 1.0 / totalWeight/*/numTargetInstances*/;
        initialSourceFraction = weightSource;
    }
    for (int j = 0; j < numInstances; j++) {
        Instance instance = data.instance(j);
        if (j < numSourceInstances)
            instance.setWeight(weightSource);
        else
            instance.setWeight(weightTarget);
    }

    if (doFraction) {
        for (int it = 0; it < sourceIterations/*m_NumIterations*/; it++) {

            sourceFraction = (1 - (it / (double) m_NumIterations)) * initialSourceFraction; //[same weights as regular]
            if (sourceFraction > .995)
                sourceFraction = .995;
            //double sourceWeight = (sourceFraction * numInstances) / numSourceInstances;
            double sourceWeight = (sourceFraction * numTargetInstances)
                    / (numSourceInstances * (1 - sourceFraction));
            for (int j = 0; j < numInstances; j++) {
                Instance instance = data.instance(j);
                if (j < numSourceInstances)
                    instance.setWeight(sourceWeight);
                else
                    instance.setWeight(1);
            }
            buildClassifierWithWeights(data);
            System.out.println("Iteration " + it + ":" + getTestError());
        }
    } else {

        for (int i = 0; i < numInstances; i++)
            weights[i] = data.instance(i).weight();
        buildClassifierWithWeights(data);
        System.out.println("Iteration -1:" + getTestError());
        for (int i = 0; i < numInstances; i++)
            data.instance(i).setWeight(weights[i]);

        for (int it = 0; it < sourceIterations; it++) {

            Instances sample = null;
            if (!resample || m_NumIterationsPerformed == 0) {
                sample = data;
            } else {
                double sum = data.sumOfWeights();
                double[] sweights = new double[data.numInstances()];
                for (int i = 0; i < sweights.length; i++) {
                    sweights[i] = data.instance(i).weight() / sum;
                }
                sample = data.resampleWithWeights(randomInstance, sweights);
            }

            try {
                m_Classifiers[it].buildClassifier(sample);
            } catch (Exception e) {
                e.printStackTrace();
                System.out.println("E: " + e);
            }

            sourceFraction = initialSourceFraction * (1 - (it + 1) / (double) m_NumIterations);
            setWeights(data, m_Classifiers[it], sourceFraction, numSourceInstances, false);

            for (int i = 0; i < numInstances; i++)
                weights[i] = data.instance(i).weight();

            buildClassifierWithWeights(data);

            System.out.println("Iteration " + it + ":" + getTestError());

            for (int i = 0; i < numInstances; i++)
                data.instance(i).setWeight(weights[i]);

        }

    }

}

From source file:Pair.java

License:Open Source License

/**
 * Boosting method. Boosts any classifier that can handle weighted
 * instances.//w w  w .j a  v a  2 s  . c  o m
 *
 * @param data the training data to be used for generating the
 * boosted classifier.
 * @exception Exception if the classifier could not be built successfully
 */
protected void buildClassifierWithWeights(Instances data) throws Exception {

    Random randomInstance = new Random(0);
    double epsilon, reweight, beta = 0;
    Evaluation evaluation;
    Instances sample;
    // Initialize data
    m_Betas = new double[m_Classifiers.length];
    m_NumIterationsPerformed = 0;
    int numSourceInstances = m_SourceInstances.numInstances();

    // Do boostrap iterations
    for (m_NumIterationsPerformed = 0; m_NumIterationsPerformed < m_Classifiers.length; m_NumIterationsPerformed++) {
        // Build the classifier
        sample = null;
        if (!resample || m_NumIterationsPerformed == 0) {
            sample = data;
        } else {
            double sum = data.sumOfWeights();
            double[] weights = new double[data.numInstances()];
            for (int i = 0; i < weights.length; i++) {
                weights[i] = data.instance(i).weight() / sum;
            }
            sample = data.resampleWithWeights(randomInstance, weights);

            if (doSampleSize) {
                int effectiveInstances = (int) (sourceFraction * weights.length + numTargetInstances);
                if (effectiveInstances > numSourceInstances + numTargetInstances)
                    effectiveInstances = numSourceInstances + numTargetInstances;
                //System.out.println(effectiveInstances);               
                sample.randomize(randomInstance);
                Instances q = new Instances(sample, 0, effectiveInstances);
                sample = q;
            }
        }
        try {
            m_Classifiers[m_NumIterationsPerformed].buildClassifier(sample);
        } catch (Exception e) {
            e.printStackTrace();
            System.out.println("E: " + e);
        }

        if (doBagging)
            beta = 0.4 / .6; //always same beta
        else
            beta = setWeights(data, m_Classifiers[m_NumIterationsPerformed], -1, numSourceInstances, true);

        // Stop if error too small or error too big and ignore this model
        if (beta < 0) { //setWeights indicates a problem with negative beta
            if (m_NumIterationsPerformed == 0) {
                m_NumIterationsPerformed = 1; // If we're the first we have to to use it
            }
            break;
        }

        // Determine the weight to assign to this model

        m_Betas[m_NumIterationsPerformed] = Math.log(1 / beta);

    }

    betaSum = 0;

    for (int i = 0; i < m_NumIterationsPerformed; i++)
        betaSum += m_Betas[i];
}