Example usage for weka.core Instances equalHeaders

List of usage examples for weka.core Instances equalHeaders

Introduction

In this page you can find the example usage for weka.core Instances equalHeaders.

Prototype

publicboolean equalHeaders(Instances dataset) 

Source Link

Document

Checks if two headers are equivalent.

Usage

From source file:classifyfromimage.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
    this.name3 = IJ.getImage().getTitle();
    this.name4 = this.name3.replaceFirst("[.][^.]+$", "");
    System.out.println("hola " + this.name4);
    selectWindow(this.name3);
    System.out.println(this.name4);
    System.out.println(this.name3);
    RoiManager rm = RoiManager.getInstance();
    IJ.run("Duplicate...", this.name3);
    IJ.run("Set Measurements...", "area perimeter fit shape limit scientific redirect=None decimal=5");
    selectWindow(this.name3);
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Enhance Contrast...", "saturated=25 equalize");
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Convolve...",
            "text1=[-1 -3 -4 -3 -1\n-3 0 6 0 -3\n-4 6 50 6 -4\n-3 0 6 0 -3\n-1 -3 -4 -3 -1\n] normalize");
    IJ.run("8-bit", "");
    IJ.run("Restore Selection", "");
    IJ.run("Make Binary", "");
    Prefs.blackBackground = false;/* w w w .ja  v  a2s.c o  m*/
    IJ.run("Convert to Mask", "");
    IJ.run("Restore Selection", "");
    this.valor1 = this.interval3.getText();
    this.valor2 = this.interval4.getText();
    System.out.println("VECTOR-> punctua: " + this.valor1 + " " + this.valor2);
    this.text = "size=" + this.valor1 + "-" + this.valor2
            + " pixel show=Outlines display include summarize add";
    IJ.run("Analyze Particles...", this.text);
    IJ.saveAs("tif", this.name3 + "_processed");
    String dest_filename1, dest_filename2, full;
    selectWindow("Results");
    //dest_filename1 = this.name2 + "_complete.txt";
    dest_filename2 = this.name3 + "_complete.csv";
    //IJ.saveAs("Results", prova + File.separator + dest_filename1);
    IJ.run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row");
    //IJ.saveAs("Results", dir + File.separator + dest_filename2);
    IJ.saveAs("Results", this.name3 + "_complete.csv");
    IJ.run("Restore Selection");
    IJ.run("Clear Results");

    //txtarea.setText("Converting, please wait...  ");
    try {
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name3 + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }
    //txtdata2.setText(this.name3);

    //txtarea.setText("Succesfully converted " + this.name3);
    //txtarea.setText("Analysing your data, please wait...  ");
    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        this.txtarea2.setText(
                "Your file:" + this.name3 + ".arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        A_MachineLearning nf1 = new A_MachineLearning();
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        nf1.setVisible(true);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    //IJ.RoiManager("Delete");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }

    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");
    setVisible(false);
    dispose();// TODO add your handling code here:

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:A_MachineLearning.java

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton7ActionPerformed
    Instances data;//  www.ja  v a2s . c o  m
    try {
        data = new Instances(new BufferedReader(new FileReader(this.file2 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.file2 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        txtresults1.setText(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by: \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.showMessage("analysing complete ");
}

From source file:classificationPLugin.java

private void ClassifyActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_ClassifyActionPerformed
    this.name = txtdirecotry2.getText();
    System.out.println(this.name);
    try {/*w  w w .  jav  a 2 s .c  o m*/
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }
    try {
        FileReader reader = new FileReader(this.name + ".arff");
        BufferedReader br = new BufferedReader(reader);
        instance.read(br, null);
        br.close();
        instance.requestFocus();

    } catch (Exception e2) {
        System.out.println(e2);
    }
    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }

        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name + "arff" + "\nhas been analysed, and it is composed by-> \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        classi.setText(
                "Your file:" + this.name + "arff" + "\nhas been analysed, and it is composed by: \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }
    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");

}

From source file:dialog1.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed

    try {/*from   ww  w.  j ava 2s  . co m*/
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(txtfilename.getText() + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        /*URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();*/
        InputStream stream = this.getClass().getResourceAsStream("/" + "Final.model");
        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));
            //txtarea2.append(Utils.arrayToString(newData.classAttribute().value((int) pred)));
            //this.target2.add((i + 1) + " -);
            //this.target.add(newData.classAttribute().value((int) pred));
            //for (String s : this.list) {
            //this.target2 += s + ",";

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        //txtarea2.setText("Your file:" + this.name3 + ".arff"
        //+ "\nhas been analysed, and it is composed by-> punctua: " + p + ", rods: " + r + ", networks: " + n
        //+ "\n"
        //+ "\nAnalyse complete");
        //txtarea.setText("Analyse complete");

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }
    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");
    setVisible(false);
    dispose();// TODO add your handling code here:

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:classifyfromimage1.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
    selectWindow(this.name3);
    this.name3 = IJ.getImage().getTitle();
    this.name4 = this.name3.replaceFirst("[.][^.]+$", "");
    RoiManager rm = RoiManager.getInstance();
    IJ.run("Duplicate...", this.name4);
    IJ.run("Set Measurements...", "area perimeter fit shape limit scientific redirect=None decimal=5");
    selectWindow(this.name3);
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Enhance Contrast...", "saturated=25 equalize");
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Convolve...",
            "text1=[-1 -3 -4 -3 -1\n-3 0 6 0 -3\n-4 6 50 6 -4\n-3 0 6 0 -3\n-1 -3 -4 -3 -1\n] normalize");
    IJ.run("8-bit", "");
    IJ.run("Restore Selection", "");
    IJ.run("Make Binary", "");
    Prefs.blackBackground = false;//from  w  w w  . j  a  v a 2s.  c  o  m
    IJ.run("Convert to Mask", "");
    IJ.run("Restore Selection", "");
    this.valor1 = this.interval3.getText();
    this.valor2 = this.interval4.getText();
    this.text = "size=" + this.valor1 + "-" + this.valor2
            + " pixel show=Outlines display include summarize add";
    IJ.saveAs("tif", this.name3 + "_processed");
    String dest_filename1, dest_filename2, full;
    selectWindow("Results");
    //dest_filename1 = this.name2 + "_complete.txt";
    dest_filename2 = this.name3 + "_complete.csv";
    //IJ.saveAs("Results", prova + File.separator + dest_filename1);
    IJ.run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row");
    //IJ.saveAs("Results", dir + File.separator + dest_filename2);
    IJ.saveAs("Results", this.name3 + "_complete.csv");
    IJ.run("Restore Selection");
    IJ.run("Clear Results");

    try {
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name3 + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels(txtlabel.getText());
        filter.setAttributeName(txtpath2.getText());
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);

        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(txtpath.getText());
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));
            //txtarea2.append(Utils.arrayToString(dist));
            classif.add(newData.classAttribute().value((int) pred));
        }

        classif.removeAll(Arrays.asList("", null));
        System.out.println(classif);
        String vecstring = "";

        for (Object s : classif) {
            vecstring += s + ",";
            System.out.println("Hola " + vecstring);
        }
        Map<String, Integer> seussCount = new HashMap<String, Integer>();
        for (String t : classif) {
            Integer i = seussCount.get(t);
            if (i == null) {
                i = 0;
            }
            seussCount.put(t, i + 1);
        }
        String s = vecstring;
        int counter = 0;
        for (int i = 0; i < s.length(); i++) {
            if (s.charAt(i) == '$') {
                counter++;
            }
        }
        System.out.println(seussCount);
        System.out.println("hola " + counter++);
        IJ.showMessage("Your file:" + this.name3 + "arff" + "\n is composed by" + seussCount);
        txtpath2.setText("Your file:" + this.name3 + "arff" + "\n is composed by" + seussCount);
        A_MachineLearning nf2 = new A_MachineLearning();
        A_MachineLearning.txtresult2.append(this.txtpath2.getText());
        nf2.setVisible(true);

    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:MachinLearningInterface.java

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton7ActionPerformed
    Instances data;/*from   ww w.j  a v  a  2s  .c o  m*/
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.showMessage("analysing complete ");
}

From source file:MachinLearningInterface.java

private void jButton10ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton10ActionPerformed
    Instances data;/*from   w w w.j  a  va  2 s. c  o  m*/
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels(this.liststring);
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);

        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(this.model);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));
            //txtarea2.append(Utils.arrayToString(dist));

        }
        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls2 = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls2.classifyInstance(newData.instance(i));
            double[] dist = cls2.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        //txtarea2.setText("Your file:" + this.name3 + ".arff"
        //+ "\nhas been analysed, and it is composed by-> punctua: " + p + ", rods: " + r + ", networks: " + n
        //+ "\n"
        //+ "\nAnalyse complete");
        //txtarea.setText("Analyse complete");

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.showMessage("analysing complete "); // TODO add your handling code here:         // TODO add your handling code here:
}

From source file:A_AdvanceMachineLearning.java

private void jButton10ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton10ActionPerformed
    UIManager.put("OptionPane.yesButtonText", "Confirm");
    UIManager.put("OptionPane.noButtonText", "Cancel");
    int dialogButton = JOptionPane.YES_NO_OPTION;
    int dialogResult = JOptionPane.showConfirmDialog(this, "The labels must be the same used in the weka model",
            "Advance Machine learning", dialogButton, JOptionPane.WARNING_MESSAGE);
    if (dialogResult == 0) {
        this.list.clear();
        //txtcodigo1.setText("hola");
        this.valor = txtcodigo1.getText();
        this.valor1 = txtcodigo2.getText();
        this.valor2 = txtcodigo3.getText();
        this.valor3 = txtcodigo4.getText();
        this.valor4 = txtcodigo5.getText();
        this.valor5 = txtcodigo6.getText();
        //IJ.showMessage("your label 1 is = "+valor+", "+valor1+", "+valor2+", "+valor3+", "+valor4);
        // Array list
        this.list.add(this.valor);
        this.list.add(this.valor1);
        this.list.add(this.valor2);
        this.list.add(this.valor3);
        this.list.add(this.valor4);
        this.list.add(this.valor5);
        this.list.removeAll(Arrays.asList("", null));
        System.out.println(this.list);
        this.liststring = "";

        for (String s : this.list) {
            this.liststring += s + ",";
        }/*from  w  w w. j  ava2 s .  co  m*/
        txtlabel.setText(this.liststring);

        System.out.println(this.liststring);
        txtarea.setText("Your labels are = " + this.list + "\nThe labels had been saved");
        //txtarea.setText("The labels had been saved");

        System.out.println(label);

    } else {
        System.out.println("No Option");

    }
    Instances data;
    try {
        System.out.println(this.file2 + "arff");
        FileReader reader = new FileReader(this.file2 + ".arff");
        BufferedReader br = new BufferedReader(reader);

        data = new Instances(br);
        System.out.println(data);
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels(this.liststring);
        filter.setAttributeName(txtcodigo7.getText());
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print("hola" + newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(this.model);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

            classif.add(newData.classAttribute().value((int) pred));
        }

        classif.removeAll(Arrays.asList("", null));
        System.out.println(classif);
        String vecstring = "";

        for (Object s : classif) {
            vecstring += s + ",";

        }
        Map<String, Integer> seussCount = new HashMap<String, Integer>();
        for (String t : classif) {
            Integer i = seussCount.get(t);
            if (i == null) {
                i = 0;
            }
            seussCount.put(t, i + 1);
        }
        String s = vecstring;
        String in = vecstring;
        int i = 0;
        Pattern p = Pattern.compile(this.valor1);
        Matcher m = p.matcher(in);
        while (m.find()) {
            i++;
        }

        System.out.println("hola " + i); // Prints 2

        System.out.println(seussCount);
        txtarea2.append("Your file:" + this.file2 + "arff" + "\n is composed by" + seussCount);
        IJ.showMessage("Your file:" + this.file2 + "arff" + "\n is composed by" + seussCount);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    //IJ.showMessage("analysing complete ");// TODO add your handling code here:
}

From source file:at.aictopic1.sentimentanalysis.machinelearning.impl.TwitterClassifer.java

public Integer classify(Tweet[] tweets) {
    // TEST/*from www . ja  va  2s.com*/

    // Generate two tweet examples
    Tweet exOne = new Tweet("This is good and fantastic");
    exOne.setPreprocessedText("This is good and fantastic");
    Tweet exTwo = new Tweet("Horribly, terribly bad and more");
    exTwo.setPreprocessedText("Horribly, terribly bad and more");
    Tweet exThree = new Tweet(
            "I want to update lj and read my friends list, but I\\'m groggy and sick and blargh.");
    exThree.setPreprocessedText(
            "I want to update lj and read my friends list, but I\\'m groggy and sick and blargh.");
    Tweet exFour = new Tweet("bad hate worst sick");
    exFour.setPreprocessedText("bad hate worst sick");
    tweets = new Tweet[] { exOne, exTwo, exThree, exFour };
    // TEST

    // Load model
    //        loadModel();
    // Convert Tweet to Instance type 
    // Get String Data
    // Create attributes for the Instances set
    Attribute twitter_id = new Attribute("twitter_id");
    //        Attribute body = new Attribute("body");

    FastVector classVal = new FastVector(2);
    classVal.addElement("pos");
    classVal.addElement("neg");

    Attribute class_attr = new Attribute("class_attr", classVal);

    // Add them to a list
    FastVector attrVector = new FastVector(3);
    //        attrVector.addElement(twitter_id);
    //        attrVector.addElement(new Attribute("body", (FastVector) null));
    //        attrVector.addElement(class_attr);

    // Get the number of tweets and then create predictSet
    int numTweets = tweets.length;
    Enumeration structAttrs = dataStructure.enumerateAttributes();

    //        ArrayList<Attribute> attrList = new ArrayList<Attribute>(dataStructure.numAttributes());
    while (structAttrs.hasMoreElements()) {
        attrVector.addElement((Attribute) structAttrs.nextElement());
    }
    Instances predictSet = new Instances("predictInstances", attrVector, numTweets);
    //        Instances predictSet = new Instances(dataStructure);
    predictSet.setClassIndex(2);

    // init prediction
    double prediction = -1;

    System.out.println("PredictSet matches source structure: " + predictSet.equalHeaders(dataStructure));

    System.out.println("PredSet struct: " + predictSet.attribute(0));
    System.out.println("PredSet struct: " + predictSet.attribute(1));
    System.out.println("PredSet struct: " + predictSet.attribute(2));
    // Array to return predictions 
    //double[] tweetsClassified = new double[2][numTweets];
    //List<Integer, Double> tweetsClass = new ArrayList<Integer, Double>(numTweets);
    for (int i = 0; i < numTweets; i++) {
        String content = (String) tweets[i].getPreprocessedText();

        System.out.println("Tweet content: " + content);

        //            attrList
        Instance tweetInstance = new Instance(predictSet.numAttributes());

        tweetInstance.setDataset(predictSet);

        tweetInstance.setValue(predictSet.attribute(0), i);
        tweetInstance.setValue(predictSet.attribute(1), content);
        tweetInstance.setClassMissing();

        predictSet.add(tweetInstance);

        try {
            // Apply string filter
            StringToWordVector filter = new StringToWordVector();

            filter.setInputFormat(predictSet);
            Instances filteredPredictSet = Filter.useFilter(predictSet, filter);

            // Apply model
            prediction = trainedModel.classifyInstance(filteredPredictSet.instance(i));
            filteredPredictSet.instance(i).setClassValue(prediction);
            System.out.println("Classification: " + filteredPredictSet.instance(i).toString());
            System.out.println("Prediction: " + prediction);

        } catch (Exception ex) {
            Logger.getLogger(TwitterClassifer.class.getName()).log(Level.SEVERE, null, ex);
        }
    }

    return 0;
}

From source file:core.ClusterEvaluationEX.java

License:Open Source License

/**
 * Evaluates a clusterer with the options given in an array of
 * strings. It takes the string indicated by "-t" as training file, the
 * string indicated by "-T" as test file.
 * If the test file is missing, a stratified ten-fold
 * cross-validation is performed (distribution clusterers only).
 * Using "-x" you can change the number of
 * folds to be used, and using "-s" the random seed.
 * If the "-p" option is present it outputs the classification for
 * each test instance. If you provide the name of an object file using
 * "-l", a clusterer will be loaded from the given file. If you provide the
 * name of an object file using "-d", the clusterer built from the
 * training data will be saved to the given file.
 *
 * @param clusterer machine learning clusterer
 * @param options the array of string containing the options
 * @throws Exception if model could not be evaluated successfully
 * @return a string describing the results 
 *//*from  ww w.  ja v  a2 s.c om*/
public static String evaluateClusterer(Clusterer clusterer, String[] options) throws Exception {

    int seed = 1, folds = 10;
    boolean doXval = false;
    Instances train = null;
    Random random;
    String trainFileName, testFileName, seedString, foldsString;
    String objectInputFileName, objectOutputFileName, attributeRangeString;
    String graphFileName;
    String[] savedOptions = null;
    boolean printClusterAssignments = false;
    Range attributesToOutput = null;
    StringBuffer text = new StringBuffer();
    int theClass = -1; // class based evaluation of clustering
    boolean updateable = (clusterer instanceof UpdateableClusterer);
    DataSource source = null;
    Instance inst;

    if (Utils.getFlag('h', options) || Utils.getFlag("help", options)) {

        // global info requested as well?
        boolean globalInfo = Utils.getFlag("synopsis", options) || Utils.getFlag("info", options);

        throw new Exception("Help requested." + makeOptionString(clusterer, globalInfo));
    }

    try {
        // Get basic options (options the same for all clusterers
        //printClusterAssignments = Utils.getFlag('p', options);
        objectInputFileName = Utils.getOption('l', options);
        objectOutputFileName = Utils.getOption('d', options);
        trainFileName = Utils.getOption('t', options);
        testFileName = Utils.getOption('T', options);
        graphFileName = Utils.getOption('g', options);

        // Check -p option
        try {
            attributeRangeString = Utils.getOption('p', options);
        } catch (Exception e) {
            throw new Exception(e.getMessage() + "\nNOTE: the -p option has changed. "
                    + "It now expects a parameter specifying a range of attributes "
                    + "to list with the predictions. Use '-p 0' for none.");
        }
        if (attributeRangeString.length() != 0) {
            printClusterAssignments = true;
            if (!attributeRangeString.equals("0"))
                attributesToOutput = new Range(attributeRangeString);
        }

        if (trainFileName.length() == 0) {
            if (objectInputFileName.length() == 0) {
                throw new Exception("No training file and no object " + "input file given.");
            }

            if (testFileName.length() == 0) {
                throw new Exception("No training file and no test file given.");
            }
        } else {
            if ((objectInputFileName.length() != 0) && (printClusterAssignments == false)) {
                throw new Exception("Can't use both train and model file " + "unless -p specified.");
            }
        }

        seedString = Utils.getOption('s', options);

        if (seedString.length() != 0) {
            seed = Integer.parseInt(seedString);
        }

        foldsString = Utils.getOption('x', options);

        if (foldsString.length() != 0) {
            folds = Integer.parseInt(foldsString);
            doXval = true;
        }
    } catch (Exception e) {
        throw new Exception('\n' + e.getMessage() + makeOptionString(clusterer, false));
    }

    try {
        if (trainFileName.length() != 0) {
            source = new DataSource(trainFileName);
            train = source.getStructure();

            String classString = Utils.getOption('c', options);
            if (classString.length() != 0) {
                if (classString.compareTo("last") == 0)
                    theClass = train.numAttributes();
                else if (classString.compareTo("first") == 0)
                    theClass = 1;
                else
                    theClass = Integer.parseInt(classString);

                if (theClass != -1) {
                    if (doXval || testFileName.length() != 0)
                        throw new Exception("Can only do class based evaluation on the " + "training data");

                    if (objectInputFileName.length() != 0)
                        throw new Exception("Can't load a clusterer and do class based " + "evaluation");

                    if (objectOutputFileName.length() != 0)
                        throw new Exception("Can't do class based evaluation and save clusterer");
                }
            } else {
                // if the dataset defines a class attribute, use it
                if (train.classIndex() != -1) {
                    theClass = train.classIndex() + 1;
                    System.err
                            .println("Note: using class attribute from dataset, i.e., attribute #" + theClass);
                }
            }

            if (theClass != -1) {
                if (theClass < 1 || theClass > train.numAttributes())
                    throw new Exception("Class is out of range!");

                if (!train.attribute(theClass - 1).isNominal())
                    throw new Exception("Class must be nominal!");

                train.setClassIndex(theClass - 1);
            }
        }
    } catch (Exception e) {
        throw new Exception("ClusterEvaluation: " + e.getMessage() + '.');
    }

    // Save options
    if (options != null) {
        savedOptions = new String[options.length];
        System.arraycopy(options, 0, savedOptions, 0, options.length);
    }

    if (objectInputFileName.length() != 0)
        Utils.checkForRemainingOptions(options);

    // Set options for clusterer
    if (clusterer instanceof OptionHandler)
        ((OptionHandler) clusterer).setOptions(options);

    Utils.checkForRemainingOptions(options);

    Instances trainHeader = train;
    if (objectInputFileName.length() != 0) {
        // Load the clusterer from file
        //      clusterer = (Clusterer) SerializationHelper.read(objectInputFileName);
        java.io.ObjectInputStream ois = new java.io.ObjectInputStream(
                new java.io.BufferedInputStream(new java.io.FileInputStream(objectInputFileName)));
        clusterer = (Clusterer) ois.readObject();
        // try and get the training header
        try {
            trainHeader = (Instances) ois.readObject();
        } catch (Exception ex) {
            // don't moan if we cant
        }
    } else {
        // Build the clusterer if no object file provided
        if (theClass == -1) {
            if (updateable) {
                clusterer.buildClusterer(source.getStructure());
                while (source.hasMoreElements(train)) {
                    inst = source.nextElement(train);
                    ((UpdateableClusterer) clusterer).updateClusterer(inst);
                }
                ((UpdateableClusterer) clusterer).updateFinished();
            } else {
                clusterer.buildClusterer(source.getDataSet());
            }
        } else {
            Remove removeClass = new Remove();
            removeClass.setAttributeIndices("" + theClass);
            removeClass.setInvertSelection(false);
            removeClass.setInputFormat(train);
            if (updateable) {
                Instances clusterTrain = Filter.useFilter(train, removeClass);
                clusterer.buildClusterer(clusterTrain);
                trainHeader = clusterTrain;
                while (source.hasMoreElements(train)) {
                    inst = source.nextElement(train);
                    removeClass.input(inst);
                    removeClass.batchFinished();
                    Instance clusterTrainInst = removeClass.output();
                    ((UpdateableClusterer) clusterer).updateClusterer(clusterTrainInst);
                }
                ((UpdateableClusterer) clusterer).updateFinished();
            } else {
                Instances clusterTrain = Filter.useFilter(source.getDataSet(), removeClass);
                clusterer.buildClusterer(clusterTrain);
                trainHeader = clusterTrain;
            }
            ClusterEvaluationEX ce = new ClusterEvaluationEX();
            ce.setClusterer(clusterer);
            ce.evaluateClusterer(train, trainFileName);

            return "\n\n=== Clustering stats for training data ===\n\n" + ce.clusterResultsToString();
        }
    }

    /* Output cluster predictions only (for the test data if specified,
       otherwise for the training data */
    if (printClusterAssignments) {
        return printClusterings(clusterer, trainFileName, testFileName, attributesToOutput);
    }

    text.append(clusterer.toString());
    text.append(
            "\n\n=== Clustering stats for training data ===\n\n" + printClusterStats(clusterer, trainFileName));

    if (testFileName.length() != 0) {
        // check header compatibility
        DataSource test = new DataSource(testFileName);
        Instances testStructure = test.getStructure();
        if (!trainHeader.equalHeaders(testStructure)) {
            throw new Exception("Training and testing data are not compatible\n");
        }

        text.append("\n\n=== Clustering stats for testing data ===\n\n"
                + printClusterStats(clusterer, testFileName));
    }

    if ((clusterer instanceof DensityBasedClusterer) && (doXval == true) && (testFileName.length() == 0)
            && (objectInputFileName.length() == 0)) {
        // cross validate the log likelihood on the training data
        random = new Random(seed);
        random.setSeed(seed);
        train = source.getDataSet();
        train.randomize(random);
        text.append(crossValidateModel(clusterer.getClass().getName(), train, folds, savedOptions, random));
    }

    // Save the clusterer if an object output file is provided
    if (objectOutputFileName.length() != 0) {
        //SerializationHelper.write(objectOutputFileName, clusterer);
        saveClusterer(objectOutputFileName, clusterer, trainHeader);
    }

    // If classifier is drawable output string describing graph
    if ((clusterer instanceof Drawable) && (graphFileName.length() != 0)) {
        BufferedWriter writer = new BufferedWriter(new FileWriter(graphFileName));
        writer.write(((Drawable) clusterer).graph());
        writer.newLine();
        writer.flush();
        writer.close();
    }

    return text.toString();
}