Example usage for weka.core Instances classAttribute

List of usage examples for weka.core Instances classAttribute

Introduction

In this page you can find the example usage for weka.core Instances classAttribute.

Prototype


publicAttribute classAttribute() 

Source Link

Document

Returns the class attribute.

Usage

From source file:classifyfromimage.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
    this.name3 = IJ.getImage().getTitle();
    this.name4 = this.name3.replaceFirst("[.][^.]+$", "");
    System.out.println("hola " + this.name4);
    selectWindow(this.name3);
    System.out.println(this.name4);
    System.out.println(this.name3);
    RoiManager rm = RoiManager.getInstance();
    IJ.run("Duplicate...", this.name3);
    IJ.run("Set Measurements...", "area perimeter fit shape limit scientific redirect=None decimal=5");
    selectWindow(this.name3);
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Enhance Contrast...", "saturated=25 equalize");
    IJ.run("Subtract Background...", "rolling=1.5");
    IJ.run("Convolve...",
            "text1=[-1 -3 -4 -3 -1\n-3 0 6 0 -3\n-4 6 50 6 -4\n-3 0 6 0 -3\n-1 -3 -4 -3 -1\n] normalize");
    IJ.run("8-bit", "");
    IJ.run("Restore Selection", "");
    IJ.run("Make Binary", "");
    Prefs.blackBackground = false;/*from ww w  .  j  a va  2s  .  c o m*/
    IJ.run("Convert to Mask", "");
    IJ.run("Restore Selection", "");
    this.valor1 = this.interval3.getText();
    this.valor2 = this.interval4.getText();
    System.out.println("VECTOR-> punctua: " + this.valor1 + " " + this.valor2);
    this.text = "size=" + this.valor1 + "-" + this.valor2
            + " pixel show=Outlines display include summarize add";
    IJ.run("Analyze Particles...", this.text);
    IJ.saveAs("tif", this.name3 + "_processed");
    String dest_filename1, dest_filename2, full;
    selectWindow("Results");
    //dest_filename1 = this.name2 + "_complete.txt";
    dest_filename2 = this.name3 + "_complete.csv";
    //IJ.saveAs("Results", prova + File.separator + dest_filename1);
    IJ.run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row");
    //IJ.saveAs("Results", dir + File.separator + dest_filename2);
    IJ.saveAs("Results", this.name3 + "_complete.csv");
    IJ.run("Restore Selection");
    IJ.run("Clear Results");

    //txtarea.setText("Converting, please wait...  ");
    try {
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name3 + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }
    //txtdata2.setText(this.name3);

    //txtarea.setText("Succesfully converted " + this.name3);
    //txtarea.setText("Analysing your data, please wait...  ");
    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        this.txtarea2.setText(
                "Your file:" + this.name3 + ".arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        A_MachineLearning nf1 = new A_MachineLearning();
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.setText(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        A_MachineLearning.txtresults1.append(this.txtarea2.getText());
        nf1.setVisible(true);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    //IJ.RoiManager("Delete");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }

    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");
    setVisible(false);
    dispose();// TODO add your handling code here:

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:BaggingImprove.java

/**
 * Bagging method./*from   w  ww.  j  a  va 2  s  .  c  om*/
 *
 * @param data the training data to be used for generating the bagged
 * classifier.
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    data = new Instances(data);
    //data.deleteWithMissingClass();

    super.buildClassifier(data);

    if (m_CalcOutOfBag && (m_BagSizePercent != 100)) {
        throw new IllegalArgumentException(
                "Bag size needs to be 100% if " + "out-of-bag error is to be calculated!");
    }
    //+
    System.out.println("Classifier length" + m_Classifiers.length);

    int bagSize = data.numInstances() * m_BagSizePercent / 100;
    //+
    System.out.println("Bag Size " + bagSize);

    Random random = new Random(m_Seed);

    boolean[][] inBag = null;
    if (m_CalcOutOfBag) {
        inBag = new boolean[m_Classifiers.length][];
    }

    //+
    //inisialisasi nama penamaan model
    BufferedWriter writer = new BufferedWriter(new FileWriter("Bootstrap.txt"));

    for (int j = 0; j < m_Classifiers.length; j++) {

        Instances bagData = null;

        // create the in-bag dataset
        if (m_CalcOutOfBag) {
            inBag[j] = new boolean[data.numInstances()];

            //System.out.println("Inbag1 " + inBag[0][1]);
            //bagData = resampleWithWeights(data, random, inBag[j]);
            bagData = data.resampleWithWeights(random, inBag[j]);
            //System.out.println("num after resample " + bagData.numInstances());
            //+
            //                for (int k = 0; k < bagData.numInstances(); k++) {
            //                    System.out.println("Bag Data after resample [calc out bag]" + bagData.instance(k));
            //                }

        } else {
            //+
            System.out.println("Not m_Calc out of bag");
            System.out.println("Please configure code inside!");

            bagData = data.resampleWithWeights(random);
            if (bagSize < data.numInstances()) {
                bagData.randomize(random);
                Instances newBagData = new Instances(bagData, 0, bagSize);
                bagData = newBagData;
            }
        }

        if (m_Classifier instanceof Randomizable) {
            //+
            System.out.println("Randomizable");
            ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt());
        }

        //write bootstrap into file
        writer.write("Bootstrap " + j);
        writer.newLine();
        writer.write(bagData.toString());
        writer.newLine();

        System.out.println("Berhasil menyimpan bootstrap ke file ");

        System.out.println("Bootstrap " + j + 1);
        //            textarea.append("\nBootsrap " + (j + 1));
        //System.out.println("num instance kedua kali "+bagData.numInstances());

        for (int b = 1; b < bagData.numInstances(); b++) {
            System.out.println("" + bagData.instance(b));
            //                textarea.append("\n" + bagData.instance(b));
        }
        //            //+

        // build the classifier
        m_Classifiers[j].buildClassifier(bagData);
        //            //+
        //            
        //            SerializationHelper serialization = new SerializationHelper();
        //            serialization.write("KnnData"+model+".model", m_Classifiers[j]);
        //            System.out.println("Finish write into model");
        //            model++;
    }

    writer.flush();
    writer.close();
    // calc OOB error?
    if (getCalcOutOfBag()) {
        double outOfBagCount = 0.0;
        double errorSum = 0.0;
        boolean numeric = data.classAttribute().isNumeric();

        for (int i = 0; i < data.numInstances(); i++) {
            double vote;
            double[] votes;
            if (numeric) {
                votes = new double[1];
            } else {
                votes = new double[data.numClasses()];
            }

            // determine predictions for instance
            int voteCount = 0;
            for (int j = 0; j < m_Classifiers.length; j++) {
                if (inBag[j][i]) {
                    continue;
                }
                voteCount++;
                // double pred = m_Classifiers[j].classifyInstance(data.instance(i));
                if (numeric) {
                    // votes[0] += pred;
                    votes[0] = m_Classifiers[j].classifyInstance(data.instance(i));
                } else {
                    // votes[(int) pred]++;
                    double[] newProbs = m_Classifiers[j].distributionForInstance(data.instance(i));
                    //-
                    //                        for(double a : newProbs)
                    //                        {
                    //                            System.out.println("Double new probs %.f "+a);
                    //                        }
                    // average the probability estimates
                    for (int k = 0; k < newProbs.length; k++) {
                        votes[k] += newProbs[k];
                    }

                }
            }
            System.out.println("Vote count %d" + voteCount);

            // "vote"
            if (numeric) {
                vote = votes[0];
                if (voteCount > 0) {
                    vote /= voteCount; // average
                }
            } else {
                if (Utils.eq(Utils.sum(votes), 0)) {
                } else {
                    Utils.normalize(votes);

                }
                vote = Utils.maxIndex(votes); // predicted class
                //-
                System.out.println("Vote " + vote);

            }

            // error for instance
            outOfBagCount += data.instance(i).weight();
            if (numeric) {
                errorSum += StrictMath.abs(vote - data.instance(i).classValue()) * data.instance(i).weight();
            } else if (vote != data.instance(i).classValue()) {
                //+
                System.out.println("Vote terakhir" + data.instance(i).classValue());
                errorSum += data.instance(i).weight();
            }
        }

        m_OutOfBagError = errorSum / outOfBagCount;
    } else {
        m_OutOfBagError = 0;
    }
}

From source file:REPTree.java

License:Open Source License

/**
 * Builds classifier.//from w w w . jav a2  s  . c o  m
 * 
 * @param data the data to train with
 * @throws Exception if building fails
 */
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    data = new Instances(data);
    data.deleteWithMissingClass();

    Random random = new Random(m_Seed);

    m_zeroR = null;
    if (data.numAttributes() == 1) {
        m_zeroR = new ZeroR();
        m_zeroR.buildClassifier(data);
        return;
    }

    // Randomize and stratify
    data.randomize(random);
    if (data.classAttribute().isNominal()) {
        data.stratify(m_NumFolds);
    }

    // Split data into training and pruning set
    Instances train = null;
    Instances prune = null;
    if (!m_NoPruning) {
        train = data.trainCV(m_NumFolds, 0, random);
        prune = data.testCV(m_NumFolds, 0);
    } else {
        train = data;
    }

    // Create array of sorted indices and weights
    int[][][] sortedIndices = new int[1][train.numAttributes()][0];
    double[][][] weights = new double[1][train.numAttributes()][0];
    double[] vals = new double[train.numInstances()];
    for (int j = 0; j < train.numAttributes(); j++) {
        if (j != train.classIndex()) {
            weights[0][j] = new double[train.numInstances()];
            if (train.attribute(j).isNominal()) {

                // Handling nominal attributes. Putting indices of
                // instances with missing values at the end.
                sortedIndices[0][j] = new int[train.numInstances()];
                int count = 0;
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (!inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
            } else {

                // Sorted indices are computed for numeric attributes
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    vals[i] = inst.value(j);
                }
                sortedIndices[0][j] = Utils.sort(vals);
                for (int i = 0; i < train.numInstances(); i++) {
                    weights[0][j][i] = train.instance(sortedIndices[0][j][i]).weight();
                }
            }
        }
    }

    // Compute initial class counts
    double[] classProbs = new double[train.numClasses()];
    double totalWeight = 0, totalSumSquared = 0;
    for (int i = 0; i < train.numInstances(); i++) {
        Instance inst = train.instance(i);
        if (data.classAttribute().isNominal()) {
            classProbs[(int) inst.classValue()] += inst.weight();
            totalWeight += inst.weight();
        } else {
            classProbs[0] += inst.classValue() * inst.weight();
            totalSumSquared += inst.classValue() * inst.classValue() * inst.weight();
            totalWeight += inst.weight();
        }
    }
    m_Tree = new Tree();
    double trainVariance = 0;
    if (data.classAttribute().isNumeric()) {
        trainVariance = m_Tree.singleVariance(classProbs[0], totalSumSquared, totalWeight) / totalWeight;
        classProbs[0] /= totalWeight;
    }

    // Build tree
    m_Tree.buildTree(sortedIndices, weights, train, totalWeight, classProbs, new Instances(train, 0), m_MinNum,
            m_MinVarianceProp * trainVariance, 0, m_MaxDepth);

    // Insert pruning data and perform reduced error pruning
    if (!m_NoPruning) {
        m_Tree.insertHoldOutSet(prune);
        m_Tree.reducedErrorPrune();
        m_Tree.backfitHoldOutSet();
    }
}

From source file:A_MachineLearning.java

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton7ActionPerformed
    Instances data;//from   w  w w. ja v a  2  s  .  c o  m
    try {
        data = new Instances(new BufferedReader(new FileReader(this.file2 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.file2 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        txtresults1.setText(
                "Your file:" + this.file2 + "arff" + "\nhas been analysed, and it is composed by: \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.showMessage("analysing complete ");
}

From source file:Pair.java

License:Open Source License

/**
 * Boosting method./*  w  ww.ja  va2 s .c o  m*/
 *
 * @param data the training data to be used for generating the
 * boosted classifier.
 * @exception Exception if the classifier could not be built successfully
 */

public void buildClassifier(Instances data) throws Exception {

    super.buildClassifier(data);

    if (data.checkForStringAttributes()) {
        throw new UnsupportedAttributeTypeException("Cannot handle string attributes!");
    }
    data = new Instances(data);
    data.deleteWithMissingClass();
    if (data.numInstances() == 0) {
        throw new Exception("No train instances without class missing!");
    }
    if (!data.classAttribute().isNumeric()) {
        throw new UnsupportedClassTypeException("TrAdaBoostR2 can only handle a numeric class!");
    }
    if (m_SourceInstances == null) {
        throw new Exception("Source data has not been specified!");
    }

    m_NumClasses = data.numClasses();
    try {
        doCV(data);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:classificationPLugin.java

private void ClassifyActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_ClassifyActionPerformed
    this.name = txtdirecotry2.getText();
    System.out.println(this.name);
    try {/*w ww .  ja  v  a2  s.  c  o  m*/
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(this.name));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }
    try {
        FileReader reader = new FileReader(this.name + ".arff");
        BufferedReader br = new BufferedReader(reader);
        instance.read(br, null);
        br.close();
        instance.requestFocus();

    } catch (Exception e2) {
        System.out.println(e2);
    }
    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();

        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }

        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name + "arff" + "\nhas been analysed, and it is composed by-> \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        classi.setText(
                "Your file:" + this.name + "arff" + "\nhas been analysed, and it is composed by: \npunctua: "
                        + p + ", rods: " + r + ", networks: " + n);
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }
    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");

}

From source file:REPRandomTree.java

License:Open Source License

/**
 * Builds classifier./*from   www .  j  a  va  2 s .c o m*/
 * 
 * @param data the data to train with
 * @throws Exception if building fails
 */
public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    data = new Instances(data);
    data.deleteWithMissingClass();

    Random random = new Random(m_Seed);

    m_zeroR = null;
    if (data.numAttributes() == 1) {
        m_zeroR = new ZeroR();
        m_zeroR.buildClassifier(data);
        return;
    }

    // Randomize and stratify
    data.randomize(random);
    if (data.classAttribute().isNominal()) {
        data.stratify(m_NumFolds);
    }

    // Split data into training and pruning set
    Instances train = null;
    Instances prune = null;
    if (!m_NoPruning) {
        train = data.trainCV(m_NumFolds, 0, random);
        prune = data.testCV(m_NumFolds, 0);
    } else {
        train = data;
    }

    // Create array of sorted indices and weights
    int[][][] sortedIndices = new int[1][train.numAttributes()][0];
    double[][][] weights = new double[1][train.numAttributes()][0];
    double[] vals = new double[train.numInstances()];
    for (int j = 0; j < train.numAttributes(); j++) {
        if (j != train.classIndex()) {
            weights[0][j] = new double[train.numInstances()];
            if (train.attribute(j).isNominal()) {

                // Handling nominal attributes. Putting indices of
                // instances with missing values at the end.
                sortedIndices[0][j] = new int[train.numInstances()];
                int count = 0;
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (!inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    if (inst.isMissing(j)) {
                        sortedIndices[0][j][count] = i;
                        weights[0][j][count] = inst.weight();
                        count++;
                    }
                }
            } else {

                // Sorted indices are computed for numeric attributes
                for (int i = 0; i < train.numInstances(); i++) {
                    Instance inst = train.instance(i);
                    vals[i] = inst.value(j);
                }
                sortedIndices[0][j] = Utils.sort(vals);
                for (int i = 0; i < train.numInstances(); i++) {
                    weights[0][j][i] = train.instance(sortedIndices[0][j][i]).weight();
                }
            }
        }
    }

    // Compute initial class counts
    double[] classProbs = new double[train.numClasses()];
    double totalWeight = 0, totalSumSquared = 0;
    for (int i = 0; i < train.numInstances(); i++) {
        Instance inst = train.instance(i);
        if (data.classAttribute().isNominal()) {
            classProbs[(int) inst.classValue()] += inst.weight();
            totalWeight += inst.weight();
        } else {
            classProbs[0] += inst.classValue() * inst.weight();
            totalSumSquared += inst.classValue() * inst.classValue() * inst.weight();
            totalWeight += inst.weight();
        }
    }
    m_Tree = new Tree();
    double trainVariance = 0;
    if (data.classAttribute().isNumeric()) {
        trainVariance = m_Tree.singleVariance(classProbs[0], totalSumSquared, totalWeight) / totalWeight;
        classProbs[0] /= totalWeight;
    }

    // Build tree
    m_Tree.buildTree(sortedIndices, weights, train, totalWeight, classProbs, new Instances(train, 0), m_MinNum,
            m_MinVarianceProp * trainVariance, 0, m_MaxDepth, m_FeatureFrac, random);

    // Insert pruning data and perform reduced error pruning
    if (!m_NoPruning) {
        m_Tree.insertHoldOutSet(prune);
        m_Tree.reducedErrorPrune();
        m_Tree.backfitHoldOutSet();
    }
}

From source file:dialog1.java

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed

    try {//from  w  w w. j  a  v  a2s  .c  o m
        CSVLoader loader = new CSVLoader();
        loader.setSource(new File(txtfilename.getText() + "_complete.csv"));
        Instances data = loader.getDataSet();
        System.out.println(data);

        // save ARFF
        String arffile = this.name3 + ".arff";
        System.out.println(arffile);
        ArffSaver saver = new ArffSaver();
        saver.setInstances(data);
        saver.setFile(new File(arffile));
        saver.writeBatch();
    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    Instances data;
    try {
        data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff")));
        Instances newData = null;
        Add filter;
        newData = new Instances(data);
        filter = new Add();
        filter.setAttributeIndex("last");
        filter.setNominalLabels("rods,punctua,networks");
        filter.setAttributeName("target");
        filter.setInputFormat(newData);
        newData = Filter.useFilter(newData, filter);
        System.out.print(newData);
        Vector vec = new Vector();
        newData.setClassIndex(newData.numAttributes() - 1);
        if (!newData.equalHeaders(newData)) {
            throw new IllegalArgumentException("Train and test are not compatible!");
        }

        /*URL urlToModel = this.getClass().getResource("/" + "Final.model");
        InputStream stream = urlToModel.openStream();*/
        InputStream stream = this.getClass().getResourceAsStream("/" + "Final.model");
        Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream);
        System.out.println("PROVANT MODEL.classifyInstance");
        for (int i = 0; i < newData.numInstances(); i++) {
            double pred = cls.classifyInstance(newData.instance(i));
            double[] dist = cls.distributionForInstance(newData.instance(i));
            System.out.print((i + 1) + " - ");
            System.out.print(newData.classAttribute().value((int) pred) + " - ");
            //txtarea2.setText(Utils.arrayToString(dist));

            System.out.println(Utils.arrayToString(dist));

            vec.add(newData.classAttribute().value((int) pred));
            //txtarea2.append(Utils.arrayToString(newData.classAttribute().value((int) pred)));
            //this.target2.add((i + 1) + " -);
            //this.target.add(newData.classAttribute().value((int) pred));
            //for (String s : this.list) {
            //this.target2 += s + ",";

        }
        int p = 0, n = 0, r = 0;

        //txtarea2.append(Utils.arrayToString(this.target));
        for (Object vec1 : vec) {
            if ("rods".equals(vec1.toString())) {
                r = r + 1;
            }
            if ("punctua".equals(vec1.toString())) {
                p = p + 1;
            }
            if ("networks".equals(vec1.toString())) {
                n = n + 1;
            }

            PrintWriter out = null;
            try {

                out = new PrintWriter(this.name3 + "_morphology.txt");
                out.println(vec);
                out.close();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            //System.out.println(vec.get(i));
        }
        System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n);
        IJ.showMessage(
                "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: "
                        + p + ", rods: " + r + ", networks: " + n);
        //txtarea2.setText("Your file:" + this.name3 + ".arff"
        //+ "\nhas been analysed, and it is composed by-> punctua: " + p + ", rods: " + r + ", networks: " + n
        //+ "\n"
        //+ "\nAnalyse complete");
        //txtarea.setText("Analyse complete");

    } catch (IOException ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex);
    }

    IJ.run("Clear Results");
    IJ.run("Clear Results");
    IJ.run("Close All", "");

    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Summary") != null) {
        IJ.selectWindow("Summary");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("Results") != null) {
        IJ.selectWindow("Results");
        IJ.run("Close");
    }
    if (WindowManager.getFrame("ROI Manager") != null) {
        IJ.selectWindow("ROI Manager");
        IJ.run("Close");
    }
    IJ.run("Close All", "roiManager");
    IJ.run("Close All", "");
    setVisible(false);
    dispose();// TODO add your handling code here:

    setVisible(false);
    dispose();// TODO add your handling code here:
    // TODO add your handling code here:
}

From source file:CJWeka.java

License:Open Source License

/** Convert a sting of floats separated by spaces into an Instance
 *//*from  w  w w  .j av  a  2  s .co m*/
private Instance floatstringToInst(String floatvalues, Instances ii, boolean hasClass) {
    String[] flostr = floatvalues.split(" ");
    int nvals = flostr.length;
    Instance i = new DenseInstance(nvals);
    int j;

    if (hasClass)
        nvals--;

    for (j = 0; j < nvals; j++) {
        if (!flostr[j].equals("")) {
            Float f = new Float(flostr[j]);
            i.setValue(j, f);
        }
    }

    i.setDataset(ii);

    if (hasClass) {
        Attribute clsAttrib = ii.classAttribute();
        //clsAttrib.addStringValue(flostr[j]);
        i.setValue(clsAttrib, flostr[j]);
    }

    return i;
}

From source file:CJWeka.java

License:Open Source License

/**
 * This function sets what the m_numeric flag to represent the passed class
 * it also performs the normalization of the attributes if applicable
 * and sets up the info to normalize the class. (note that regardless of
 * the options it will fill an array with the range and base, set to
 * normalize all attributes and the class to be between -1 and 1)
 * @param inst the instances.//from   w ww . j  a v  a 2 s .  com
 * @return The modified instances. This needs to be done. If the attributes
 * are normalized then deep copies will be made of all the instances which
 * will need to be passed back out.
 */
private Instances setClassType(Instances inst) throws Exception {
    if (inst != null) {
        // x bounds
        double min = Double.POSITIVE_INFINITY;
        double max = Double.NEGATIVE_INFINITY;
        double value;
        m_attributeRanges = new double[inst.numAttributes()];
        m_attributeBases = new double[inst.numAttributes()];
        for (int noa = 0; noa < inst.numAttributes(); noa++) {
            min = Double.POSITIVE_INFINITY;
            max = Double.NEGATIVE_INFINITY;
            for (int i = 0; i < inst.numInstances(); i++) {
                if (!inst.instance(i).isMissing(noa)) {
                    value = inst.instance(i).value(noa);
                    if (value < min) {
                        min = value;
                    }
                    if (value > max) {
                        max = value;
                    }
                }
            }

            m_attributeRanges[noa] = (max - min) / 2;
            m_attributeBases[noa] = (max + min) / 2;
            if (noa != inst.classIndex() && m_normalizeAttributes) {
                for (int i = 0; i < inst.numInstances(); i++) {
                    if (m_attributeRanges[noa] != 0) {
                        inst.instance(i).setValue(noa,
                                (inst.instance(i).value(noa) - m_attributeBases[noa]) / m_attributeRanges[noa]);
                    } else {
                        inst.instance(i).setValue(noa, inst.instance(i).value(noa) - m_attributeBases[noa]);
                    }
                }
            }
        }
        if (inst.classAttribute().isNumeric()) {
            m_numeric = true;
        } else {
            m_numeric = false;
        }
    }
    return inst;
}