Example usage for weka.core Instance setDataset

List of usage examples for weka.core Instance setDataset

Introduction

In this page you can find the example usage for weka.core Instance setDataset.

Prototype

public void setDataset(Instances instances);

Source Link

Document

Sets the reference to the dataset.

Usage

From source file:transformation.mimlTOml.ArithmeticTransformation.java

License:Open Source License

@Override
public MultiLabelInstances transformDataset() throws Exception {
    Instances newData = new Instances(template);
    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(newData.numAttributes());
    newInst.setDataset(newData); // Sets the reference to the dataset

    // For all bags in the dataset
    double nBags = dataset.getNumBags();
    for (int i = 0; i < nBags; i++) {
        // retrieves a bag
        Bag bag = dataset.getBag(i);/*w  w  w.  ja  v a  2 s .  c  om*/
        // sets the bagLabel
        newInst.setValue(0, bag.value(0));

        // retrieves instances (relational value) for each bag
        Instances instances = bag.getBagAsInstances();
        // for all attributes in bag
        for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
            double value = instances.meanOrMode(j);
            newInst.setValue(attIdx, value);
        }

        // inserts label information into the instance
        for (int j = 0; j < labelIndices.length; j++) {
            newInst.setValue(updatedLabelIndices[j], dataset.getBag(i).value(labelIndices[j]));
        }

        newData.add(newInst);
    }

    return new MultiLabelInstances(newData, dataset.getLabelsMetaData());
}

From source file:transformation.mimlTOml.ArithmeticTransformation.java

License:Open Source License

@Override
public Instance transformInstance(Bag bag) throws Exception {

    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(template.numAttributes());

    // sets the bagLabel
    newInst.setDataset(bag.dataset()); // Sets the reference to the dataset
    newInst.setValue(0, bag.value(0));/*w w w .  j  a v  a2  s .c  o  m*/

    // retrieves instances (relational value)
    Instances instances = bag.getBagAsInstances();
    // For all attributes in bag
    for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
        double value = instances.meanOrMode(j);
        newInst.setValue(attIdx, value);
    }

    // Insert label information into the instance
    for (int j = 0; j < labelIndices.length; j++) {
        newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j]));
    }

    return newInst;
}

From source file:transformation.mimlTOml.GeometricTransformation.java

License:Open Source License

@Override
public MultiLabelInstances transformDataset() throws Exception {

    Instances newData = new Instances(template);
    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(newData.numAttributes());
    newInst.setDataset(newData); // Sets the reference to the dataset

    // For all bags in the dataset
    double nBags = dataset.getNumBags();
    for (int i = 0; i < nBags; i++) {
        // retrieves a bag
        Bag bag = dataset.getBag(i);//w ww  .j av  a  2 s  .c  om
        // sets the bagLabel
        newInst.setValue(0, bag.value(0));

        // retrieves instances (relational value) for each bag
        Instances instances = bag.getBagAsInstances();
        // for all attributes in bag
        for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
            double[] minimax = minimax(instances, j);
            double value = (minimax[0] + minimax[1]) / 2.0;
            newInst.setValue(attIdx, value);
        }

        // inserts label information into the instance
        for (int j = 0; j < labelIndices.length; j++) {
            newInst.setValue(updatedLabelIndices[j], dataset.getBag(i).value(labelIndices[j]));
        }

        newData.add(newInst);
    }
    return new MultiLabelInstances(newData, dataset.getLabelsMetaData());
}

From source file:transformation.mimlTOml.GeometricTransformation.java

License:Open Source License

@Override
public Instance transformInstance(Bag bag) throws Exception {
    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(template.numAttributes());

    // sets the bagLabel
    newInst.setDataset(bag.dataset()); // Sets the reference to the dataset
    newInst.setValue(0, bag.value(0));/*from   w  w  w  . j a va  2s.  co  m*/

    // retrieves instances (relational value)
    Instances instances = bag.getBagAsInstances();
    // For all attributes in bag
    for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
        double[] minimax = minimax(instances, j);
        double value = (minimax[0] + minimax[1]) / 2.0;
        newInst.setValue(attIdx, value);
    }

    // Insert label information into the instance
    for (int j = 0; j < labelIndices.length; j++) {
        newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j]));
    }

    return newInst;
}

From source file:transformation.mimlTOml.MiniMaxTransformation.java

License:Open Source License

@Override
public MultiLabelInstances transformDataset() throws Exception {

    Instances newData = new Instances(template);
    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(newData.numAttributes());
    newInst.setDataset(newData); // Sets the reference to the dataset

    // For all bags in the dataset
    double nBags = dataset.getNumBags();
    for (int i = 0; i < nBags; i++) {
        // retrieves a bag
        Bag bag = dataset.getBag(i);//from w ww. j av a2 s .  c  o m
        // sets the bagLabel
        newInst.setValue(0, bag.value(0));

        // retrieves instances (relational value) for each bag
        Instances instances = bag.getBagAsInstances();
        // For all attributes in bag
        for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
            double[] minimax = minimax(instances, j);
            newInst.setValue(attIdx, minimax[0]);// minima value
            newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maxima
            // value);
        }
        // Copy label information into the dataset
        for (int j = 0; j < labelIndices.length; j++) {
            newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j]));
        }
        newData.add(newInst);

    }
    return new MultiLabelInstances(newData, dataset.getLabelsMetaData());
}

From source file:transformation.mimlTOml.MiniMaxTransformation.java

License:Open Source License

@Override
public Instance transformInstance(Bag bag) throws Exception {
    int labelIndices[] = dataset.getLabelIndices();
    Instance newInst = new DenseInstance(template.numAttributes());

    // sets the bagLabel
    newInst.setDataset(bag.dataset()); // Sets the reference to the dataset
    newInst.setValue(0, bag.value(0));/*from w  w  w  .  j a v  a  2  s  . c o  m*/

    // retrieves instances (relational value)
    Instances instances = bag.getBagAsInstances();
    // For all attributes in bag
    for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) {
        double[] minimax = minimax(instances, j);
        newInst.setValue(attIdx, minimax[0]);// minima value
        newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maxima
        // value);
    }

    // Insert label information into the instance
    for (int j = 0; j < labelIndices.length; j++) {
        newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j]));
    }

    return newInst;
}

From source file:tubesduaai.TesFFNN.java

public static void tes() throws Exception {
    BufferedReader reader = new BufferedReader(new FileReader("C:\\Program Files\\Weka-3-8\\data\\iris.arff"));
    data = new Instances(reader);
    reader.close();//from   www  .ja v a2  s . c  o  m
    // setting class attribute
    data.setClassIndex(data.numAttributes() - 1);
    Instances dummy = null;
    FFNN nn = new FFNN("C:\\Program Files\\Weka-3-8\\data\\iris.arff", 0);
    boolean[] nom = nn.cek_nominal();
    System.out.println("ingin load?: ");
    String load = sc.nextLine();
    if (load.equalsIgnoreCase("y")) {
        nn.load_model();
        eval = cross_validation(nn);
        nn.print_perceptron();
    } else {
        nn.buildClassifier(data);
        nn.print_perceptron();
        eval = cross_validation(nn);
        nn.print_perceptron();
    }
    System.out.println(eval.toSummaryString("\nResults\n======\n", false));
    double[] attValues1 = { 5.1, 3.5, 1.4, 0.2 };
    Instance i1 = new DenseInstance(1.0, attValues1);
    double[] attValues2 = { 7.0, 3.2, 4.7, 1.4 };
    Instance i2 = new DenseInstance(1.0, attValues2);
    double[] attValues3 = { 6.3, 3.3, 6.0, 2.5 };
    Instance i3 = new DenseInstance(1.0, attValues3);
    i1.setDataset(data);
    i2.setDataset(data);
    i3.setDataset(data);
    //hasil harusnya 0 1 2
    System.out.println(nn.classifyInstance(i1));
    System.out.println(nn.classifyInstance(i2));
    System.out.println(nn.classifyInstance(i3));
    System.out.println("ingin save?: ");
    String save = sc.nextLine();
    if (save.equalsIgnoreCase("y")) {
        nn.save_model();
    }
}

From source file:util.Weka.java

public Instance casoADecidir(double... atributos) {
    Instance casoAdecidir = new Instance(casosEntrenamiento.numAttributes());
    casoAdecidir.setDataset(casosEntrenamiento);
    for (int i = 0; i < atributos.length; i++) {
        casoAdecidir.setValue(i, atributos[i]);
    }/*w w w  .j ava  2s.  com*/
    return casoAdecidir;
}

From source file:wedt.project.Common.java

public Instances getPrepapredSet(File file) {
    try {// w  w  w  .  java 2s. c o m
        CSVLoader csvLoader = new CSVLoader();
        csvLoader.setSource(file);
        Instances loadedInstances = csvLoader.getDataSet();
        Instances instances = getEmptyInstances("instances");

        for (Instance currentInstance : loadedInstances) {
            Instance tmpInstance = extractFeature(currentInstance);
            tmpInstance.setDataset(instances);
            instances.add(tmpInstance);
        }

        return instances;
    } catch (IOException e) {
        System.out.println("Blad w przygotowywaniu zbioru");
        System.out.println(e.toString());
    }

    return null;
}

From source file:wekimini.DataGenerator.java

private void addToTempInstances(double[] inputs, double[] outputs, boolean[] recordingMask,
        int recordingRound) {
    int thisId = nextID;
    nextID++;/*from w  ww. j  av  a 2  s . c  om*/

    double myVals[] = new double[numMetaData + numInputs + numOutputs];
    myVals[idIndex] = thisId;
    myVals[recordingRoundIndex] = recordingRound;

    Date now = new Date();
    //myVals[timestampIndex] = Double.parseDouble(dateFormat.format(now)); //Error: This gives us scientific notation!

    String pretty = prettyDateFormat.format(now);
    try {
        myVals[timestampIndex] = trainingInputs.attribute(timestampIndex).parseDate(pretty);
        //myVals[timestampIndex] =
    } catch (ParseException ex) {
        myVals[timestampIndex] = 0;
        Logger.getLogger(DataManager.class.getName()).log(Level.SEVERE, null, ex);
    }

    /*for (int i = 0; i < numInputs; i++) {
     myVals[numMetaData + i] = featureVals[i];
     } */
    System.arraycopy(inputs, 0, myVals, numMetaData, inputs.length); //TODO DOUBLECHECK

    /*for (int i = 0; i < numParams; i++) {
     if (isParamDiscrete[i] && (paramVals[i] < 0 || paramVals[i] >= numParamValues[i])) {
     throw new IllegalArgumentException("Invalid value for this discrete parameter");
     }
            
     myVals[numMetaData + numFeatures + i] = paramVals[i];
     } */
    System.arraycopy(outputs, 0, myVals, numMetaData + numInputs, outputs.length);

    Instance in = new Instance(1.0, myVals);
    for (int i = 0; i < recordingMask.length; i++) {
        if (!recordingMask[i]) {
            in.setMissing(numMetaData + numInputs + i);
        } else {
            w.getDataManager().setNumExamplesPerOutput(i, w.getDataManager().getNumExamplesPerOutput(i) + 1);
            // outputInstanceCounts[i]++;
        }
    }
    in.setDataset(tempInstances);
    tempInstances.add(in);
    //setHasInstances(true);
    //fireStateChanged();
    //throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates.
}