List of usage examples for weka.core Instance hasMissingValue
public boolean hasMissingValue();
From source file:myid3andc45classifier.Model.MyID3.java
@Override public double classifyInstance(Instance instance) throws NoSupportForMissingValuesException { //Periksa apakah instance memiliki missing value if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("MyID3: no missing values, please"); }//from www .ja v a2 s . c om if (attribute == null) { return label; } else { return successors[(int) instance.value(attribute)].classifyInstance(instance); } }
From source file:myJ48.MyJ48.java
/** * Computes class distribution for instance using decision tree. * * @param instance the instance for which distribution is to be computed * @return the class distribution for the given instance * @throws NoSupportForMissingValuesException if instance has missing values *//*from ww w . j a v a 2 s .c o m*/ public double[] distributionForInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("Missing value error"); } if (currentAttribute == null) { return classDistribution; } else { return nodes[(int) instance.value(currentAttribute)].distributionForInstance(instance); } }
From source file:newdtl.NewID3.java
/** * Classifies a given test instance using the decision tree. * * @param instance the instance to be classified * @return the classification/*w w w . j ava2 s .c om*/ * @throws NoSupportForMissingValuesException if instance has missing values */ @Override public double classifyInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("NewID3: Cannot handle missing values"); } if (splitAttribute == null) { return label; } else { return children[(int) instance.value(splitAttribute)].classifyInstance(instance); } }
From source file:newdtl.NewID3.java
/** * Computes class distribution for instance using decision tree. * * @param instance the instance for which distribution is to be computed * @return the class distribution for the given instance * @throws NoSupportForMissingValuesException if instance has missing values *//*ww w . j av a 2 s . c om*/ @Override public double[] distributionForInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("NewID3: Cannot handle missing values"); } if (splitAttribute == null) { return classDistributions; } else { return children[(int) instance.value(splitAttribute)].distributionForInstance(instance); } }
From source file:newdtl.NewJ48.java
/** * Classifies a given test instance using the decision tree. * * @param instance the instance to be classified * @return the classification/*from w w w. jav a2 s. c o m*/ */ @Override public double classifyInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("NewID3: Cannot handle missing values"); } if (splitAttribute == null) { return label; } else { if (splitAttribute.isNumeric()) { if (Double.compare(instance.value(splitAttribute), splitThreshold) <= 0) { return children[0].classifyInstance(instance); } else { return children[1].classifyInstance(instance); } } else { return children[(int) instance.value(splitAttribute)].classifyInstance(instance); } } }
From source file:newdtl.NewJ48.java
/** * Computes class distribution for instance using decision tree. * * @param instance the instance for which distribution is to be computed * @return the class distribution for the given instance *//*w w w .ja v a 2 s. c o m*/ @Override public double[] distributionForInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("NewID3: Cannot handle missing values"); } if (splitAttribute == null) { return normalize(classDistributions); } else { if (splitAttribute.isNumeric()) { if (Double.compare(instance.value(splitAttribute), splitThreshold) <= 0) { return children[0].distributionForInstance(instance); } else { return children[1].distributionForInstance(instance); } } else { return children[(int) instance.value(splitAttribute)].distributionForInstance(instance); } } }