List of usage examples for weka.clusterers ClusterEvaluation clusterResultsToString
public String clusterResultsToString()
From source file:qoala.arff.java
public void SimpleKmeans(int numberOfCLuster) throws Exception { Instances train = new Instances(dataSet); SimpleKMeans skm = new SimpleKMeans(); skm.setPreserveInstancesOrder(true); skm.setNumClusters(numberOfCLuster); skm.buildClusterer(train);/*from w ww. j a va2 s .c o m*/ skm.setSeed(10); int[] ClusterSize = skm.getClusterSizes(); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(skm); eval.evaluateClusterer(train); System.out.println("Cluster Evaluation:" + eval.clusterResultsToString()); int[] assignments = skm.getAssignments(); System.out.println("# - cluster - distribution"); for (int j = 0; j < skm.getNumClusters(); j++) { int i = 0; for (int clusterNum : assignments) { if (clusterNum == j) System.out.println("Instance " + i + " -> Cluster number: " + clusterNum); i++; } } }
From source file:qoala.arff.java
public void EMClustering(int NumberOfCluster) throws Exception { Instances train = new Instances(dataSet); String[] options = new String[2]; options[0] = "-I"; options[1] = "100"; EM em = new EM(); em.setOptions(options);//from w w w . j a v a 2 s . co m em.setNumClusters(NumberOfCluster); em.buildClusterer(train); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(em); eval.evaluateClusterer(train); eval.getNumClusters(); System.out.println("Cluster Evaluation:" + eval.clusterResultsToString()); System.out.println("# - cluster - distribution"); for (int j = 0; j < eval.getNumClusters(); j++) { for (int i = 0; i < train.numInstances(); i++) { int cluster = em.clusterInstance(train.instance(i)); if (cluster == j) System.out.println("Instance " + i + " -> Cluster number: " + cluster); } } }
From source file:qoala.arff.java
public void XMenas() throws Exception { Instances train = new Instances(dataSet); XMeans xm = new XMeans(); xm.setMaxNumClusters(100);//from w ww . j a v a 2 s .c o m xm.setMinNumClusters(2); xm.buildClusterer(train); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(xm); eval.evaluateClusterer(train); eval.getNumClusters(); System.out.println("Cluster Evaluation:" + eval.clusterResultsToString()); System.out.println("# - cluster - distribution"); for (int j = 0; j < eval.getNumClusters(); j++) { for (int i = 0; i < train.numInstances(); i++) { int cluster = xm.clusterInstance(train.instance(i)); if (cluster == j) System.out.println("Instance " + i + " -> Cluster number: " + cluster); } } }
From source file:rdfsystem.data.DataMining.java
public static String cluster(RdfManager manager) throws Exception { Instances ins = transformData(manager, false); SimpleKMeans cls = new SimpleKMeans(); String[] options = "-N 5".split(" "); cls.setOptions(options);// w w w . j av a2s. c o m cls.buildClusterer(ins); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(cls); eval.evaluateClusterer(ins); return eval.clusterResultsToString(); }
From source file:sirius.clustering.main.TrainClustererPane.java
License:Open Source License
private void start() { if (this.fileTextField.getText().length() == 0) { JOptionPane.showMessageDialog(parent, "Please choose training file!", "Error", JOptionPane.ERROR_MESSAGE); return;// w w w. ja v a 2 s . c o m } if (m_ClustererEditor.getValue() == null) { JOptionPane.showMessageDialog(parent, "Please choose clustering method!", "Error", JOptionPane.ERROR_MESSAGE); return; } if (clusterThread != null) { JOptionPane.showMessageDialog(parent, "Cannot start training of Clusterer as another is running!", "Error", JOptionPane.ERROR_MESSAGE); return; } this.startButton.setEnabled(false); this.stopButton.setEnabled(true); this.numberOfClusterTextField.setText(""); clusterThread = (new Thread() { public void run() { try { Instances inst = new Instances(new BufferedReader(new FileReader(fileTextField.getText()))); inst.setClassIndex(m_ClassCombo.getSelectedIndex()); if (inst.classAttribute().isNumeric()) { JOptionPane.showMessageDialog(parent, "Class must be nominal!", "Error", JOptionPane.ERROR_MESSAGE); } else { outputTextArea.setText(""); clusterer = (Clusterer) m_ClustererEditor.getValue(); statusLabel.setText(" Training Clusterer.."); clusterer.buildClusterer(removeClass(inst)); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(clusterer); eval.evaluateClusterer(inst); outputTextArea.append(eval.clusterResultsToString()); outputTextArea.append("\n"); if (clusterer != null) { numberOfClusterTextField.setText("" + clusterer.numberOfClusters()); statusLabel.setText(" Clusterer Trained.."); } } startButton.setEnabled(true); stopButton.setEnabled(false); clusterThread = null; } catch (Exception e) { e.printStackTrace(); } } }); clusterThread.setPriority(Thread.MIN_PRIORITY); // UI has most priority clusterThread.start(); }
From source file:soccer.core.ASimplePractice.java
public void evaluate() throws IOException, Exception { Instances data = loader.getInstances(); SimpleKMeans cluster = new SimpleKMeans(); cluster.setNumClusters(4);// w w w .j a va2 s . co m cluster.buildClusterer(data); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(cluster); eval.evaluateClusterer(data); System.out.println(eval.clusterResultsToString()); }
From source file:soccer.core.classifiers.BookKeeperConsistencyClassifier.java
public static void main(String[] args) throws Exception { BookKeeperConsistency bkc = new BookKeeperConsistency(); Instances data = bkc.getInstances(); RemoveWithValues rwv = new RemoveWithValues(); rwv.setOptions(new String[] { "-C", "4", "-S", "6", "-V" }); rwv.setInputFormat(data);/*w ww. j a v a2 s . co m*/ data = Filter.useFilter(data, rwv); RemoveWithValues rwv1 = new RemoveWithValues(); rwv1.setOptions(new String[] { "-C", "6", "-S", "6", "-V" }); rwv1.setInputFormat(data); data = Filter.useFilter(data, rwv1); // Normalize nm = new Normalize(); // nm.setOptions(new String[]{ // "-S", "100" // }); // nm.setInputFormat(data); // data = Filter.useFilter(data, nm); Remove rm = new Remove(); rm.setOptions(new String[] { "-R", "2-last" }); rm.setInputFormat(data); Instances newData = Filter.useFilter(data, rm); SimpleKMeans cluster = new SimpleKMeans(); cluster.setOptions(new String[] { "-N", "2", "-A", "weka.core.ManhattanDistance" }); cluster.buildClusterer(newData); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(cluster); eval.evaluateClusterer(newData); System.out.println(eval.clusterResultsToString()); // for (int i = 0; i < newData.size(); i++) { // Instance instance = newData.get(i); // if (cluster.clusterInstance(instance) == 0) { // System.out.println(data.get(i).toString()); // } // } }
From source file:soccer.core.models.PlayerModel.java
public static void main(String[] args) throws Exception { PlayerModel pm = new PlayerModel(); Instances data = pm.buildInstance(); SimpleKMeans cluster = new SimpleKMeans(); cluster.setNumClusters(4);/*from w w w .j a v a 2 s.co m*/ cluster.buildClusterer(data); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(cluster); eval.evaluateClusterer(data); System.out.println(eval.clusterResultsToString()); }
From source file:view.centerPanels.ClusteringPnlCenter.java
/** * Creates new form ClusteringPnlCenter//from w ww . ja v a 2 s .c om */ public ClusteringPnlCenter(SimpleKMeans kMeans, ClusterEvaluation eval) { initComponents(); setSize(MainGUI.getInstance().getPnlCenter().getWidth(), MainGUI.getInstance().getPnlCenter().getHeight()); simpleKMeans = kMeans; //treba ispisati sta da ispise String text = eval.clusterResultsToString(); String[] textArray = text.split("\n"); for (int i = 13; i < textArray.length; i++) { txtArea.setText(txtArea.getText() + textArray[i] + "\n"); } // txtArea.setText(eval.clusterResultsToString()); setVisible(true); MainGUI.getInstance().validate(); MainGUI.getInstance().repaint(); }
From source file:view.centerPanels.ClusteringPredictPnlCenter.java
private void btnStartActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_btnStartActionPerformed Instances test = new Instances(Data.getInstance().getInstances()); test.delete();// ww w .j a v a2 s . c o m //proverava da li su dobro unete vrednosti //ako nesto nije doro uneseno nekaa iskoci JoptionPane //sta je lose uneseno, naziv aributa recimo for (int i = 0; i < fields.size(); i++) { String text = fields.get(i).getText().trim(); //prekace prazna pollja jer za klasterizaciju znaci da se ona ignorisu //to za klasifikaciju nije slucaj if (!text.equals("")) { if (test.attribute(i).isNominal()) { boolean correct = false; for (int j = 0; j < test.attribute(i).numValues(); j++) { if (text.equals(test.attribute(i).value(j))) { correct = true; } } if (!correct) { JOptionPane.showMessageDialog(this, "Incorrect format for attribute " + test.attribute(i).name()); break; } } if (test.attribute(i).isNumeric()) { try { double value = Double.parseDouble(text); } catch (Exception e) { JOptionPane.showMessageDialog(this, "Incorrect format for attribute " + test.attribute(i).name()); break; } } } } int numAttributes = test.numAttributes(); Instance instance = new Instance(numAttributes); //ovaj remove je potreban samo zaklasterizaciju String remove = ""; boolean hasRemove = false; for (int i = 0; i < fields.size(); i++) { String text = fields.get(i).getText().trim(); //vama ne sme da se pojavi prazan string if (text.equals("")) { remove = remove + (i + 1) + ","; hasRemove = true; } else { try { double value = Double.parseDouble(text); instance.setValue(i, value); } catch (Exception e) { instance.setValue(i, text); } } } if (hasRemove) { remove = remove.substring(0, remove.length() - 1); } //meni se InstanceS zove test a vama instances, ovako se dodaje ta jedna instanca test.add(instance); //sad radite vasu evaluaciju ovo je klaserizacija ostalo Remove removeFilter = new Remove(); removeFilter.setAttributeIndices(remove); FilteredClusterer filteredClusterer = new FilteredClusterer(); try { filteredClusterer.setClusterer(kMeans); filteredClusterer.setFilter(removeFilter); filteredClusterer.buildClusterer(Data.getInstance().getInstances()); } catch (Exception e) { } ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(filteredClusterer); try { eval.evaluateClusterer(test); } catch (Exception ex) { Logger.getLogger(ClusteringPredictPnlCenter.class.getName()).log(Level.SEVERE, null, ex); } String[] results = eval.clusterResultsToString().split("\n"); String cluster = results[results.length - 1].split(" ")[0]; textAreaResult.setText("This instance belongs to \ncluster number: " + cluster + ".\n\n" + "Take a look on visualization \nfor better feeleing about \nthis instance"); test.delete(); }