List of usage examples for weka.classifiers.trees M5P buildClassifier
@Override public void buildClassifier(Instances data) throws Exception
From source file:cn.ict.zyq.bestConf.COMT2.COMT2.java
License:Open Source License
private static M5P buildModel(Instances modelInstances, int numOfInstanceInLeaf) throws Exception { M5P retval = new M5P(); retval.setSaveInstances(true);/*w w w .j a v a 2 s. co m*/ retval.setOptions(Utils.splitOptions("-N -L -M " + numOfInstanceInLeaf)); retval.buildClassifier(modelInstances); return retval; }
From source file:lu.lippmann.cdb.dt.ModelTreeFactory.java
License:Open Source License
/** * Main method.//from w ww . java2s. co m * @param args command line arguments */ public static void main(final String[] args) { try { //final String f="./samples/csv/uci/winequality-red-simplified.csv"; final String f = "./samples/csv/uci/winequality-white.csv"; //final String f="./samples/arff/UCI/crimepredict.arff"; final Instances dataSet = WekaDataAccessUtil.loadInstancesFromARFFOrCSVFile(new File(f)); System.out.println(dataSet.classAttribute().isNumeric()); final M5P rt = new M5P(); //rt.setUnpruned(true); rt.setMinNumInstances(1000); rt.buildClassifier(dataSet); System.out.println(rt); System.out.println(rt.graph()); final GraphWithOperations gwo = GraphUtil.buildGraphWithOperationsFromWekaRegressionString(rt.graph()); System.out.println(gwo); System.out.println(new ASCIIGraphDsl().getDslString(gwo)); final Evaluation eval = new Evaluation(dataSet); /*Field privateStringField = Evaluation.class.getDeclaredField("m_CoverageStatisticsAvailable"); privateStringField.setAccessible(true); //privateStringField.get boolean fieldValue = privateStringField.getBoolean(eval); System.out.println("fieldValue = " + fieldValue);*/ double[] d = eval.evaluateModel(rt, dataSet); System.out.println("PREDICTED -> " + FormatterUtil.buildStringFromArrayOfDoubles(d)); System.out.println(eval.errorRate()); System.out.println(eval.sizeOfPredictedRegions()); System.out.println(eval.toSummaryString("", true)); System.out.println(new DecisionTree(gwo, eval.errorRate())); } catch (Exception e) { e.printStackTrace(); } }