List of usage examples for weka.classifiers RandomizableIteratedSingleClassifierEnhancer subclass-usage
From source file BaggingImprove.java
/** * * @author sartikahasibuan */ public class BaggingImprove extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, AdditionalMeasureProducer, TechnicalInformationHandler {
From source file com.tum.classifiertest.FastRfBagging.java
/**
* Based on the "weka.classifiers.meta.Bagging" class, revision 1.39,
* by Kirkby, Frank and Trigg, with modifications:
* <ul>
* <p/>
* <li>Instead of Instances, produces DataCaches; consequently, FastRfBagging
From source file gyc.OverBoostM1.java
/**
<!-- globalinfo-start -->
* Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.<br/>
* <br/>
* For more information, see<br/>
* <br/>
From source file gyc.SMOTEBagging.java
/**
<!-- globalinfo-start -->
* Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/>
* <br/>
* For more information, see<br/>
* <br/>
From source file gyc.UnderOverBoostM1.java
/**
<!-- globalinfo-start -->
* Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.<br/>
* <br/>
* For more information, see<br/>
* <br/>
From source file hr.irb.fastRandomForest.FastRfBagging.java
/**
* Based on the "weka.classifiers.meta.Bagging" class, revision 1.39,
* by Kirkby, Frank and Trigg, with modifications:
* <ul>
* <p/>
* <li>Instead of Instances, produces DataCaches; consequently, FastRfBagging