List of usage examples for weka.classifiers.meta FilteredClassifier distributionForInstance
public double[] distributionForInstance(Instance instance) throws Exception
From source file:mulan.classifier.transformation.MultiLabelStacking.java
License:Open Source License
/** * Builds the base-level classifiers./*from ww w. j a va2 s . co m*/ * Their predictions are gathered in the baseLevelPredictions member * @param trainingSet * @throws Exception */ public void buildBaseLevel(MultiLabelInstances trainingSet) throws Exception { train = new Instances(trainingSet.getDataSet()); baseLevelData = new Instances[numLabels]; baseLevelEnsemble = AbstractClassifier.makeCopies(baseClassifier, numLabels); if (normalize) { maxProb = new double[numLabels]; minProb = new double[numLabels]; Arrays.fill(minProb, 1); } // initialize the table holding the predictions of the first level // classifiers for each label for every instance of the training set baseLevelPredictions = new double[train.numInstances()][numLabels]; for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) { debug("Label: " + labelIndex); // transform the dataset according to the BR method baseLevelData[labelIndex] = BinaryRelevanceTransformation.transformInstances(train, labelIndices, labelIndices[labelIndex]); // attach indexes in order to keep track of the original positions baseLevelData[labelIndex] = new Instances(attachIndexes(baseLevelData[labelIndex])); // prepare the transformed dataset for stratified x-fold cv Random random = new Random(1); baseLevelData[labelIndex].randomize(random); baseLevelData[labelIndex].stratify(numFolds); debug("Creating meta-data"); for (int j = 0; j < numFolds; j++) { debug("Label=" + labelIndex + ", Fold=" + j); Instances subtrain = baseLevelData[labelIndex].trainCV(numFolds, j, random); // create a filtered meta classifier, used to ignore // the index attribute in the build process // perform stratified x-fold cv and get predictions // for each class for every instance FilteredClassifier fil = new FilteredClassifier(); fil.setClassifier(baseLevelEnsemble[labelIndex]); Remove remove = new Remove(); remove.setAttributeIndices("first"); remove.setInputFormat(subtrain); fil.setFilter(remove); fil.buildClassifier(subtrain); // Classify test instance Instances subtest = baseLevelData[labelIndex].testCV(numFolds, j); for (int i = 0; i < subtest.numInstances(); i++) { double distribution[] = new double[2]; distribution = fil.distributionForInstance(subtest.instance(i)); // Ensure correct predictions both for class values {0,1} // and {1,0} Attribute classAttribute = baseLevelData[labelIndex].classAttribute(); baseLevelPredictions[(int) subtest.instance(i) .value(0)][labelIndex] = distribution[classAttribute.indexOfValue("1")]; if (normalize) { if (distribution[classAttribute.indexOfValue("1")] > maxProb[labelIndex]) { maxProb[labelIndex] = distribution[classAttribute.indexOfValue("1")]; } if (distribution[classAttribute.indexOfValue("1")] < minProb[labelIndex]) { minProb[labelIndex] = distribution[classAttribute.indexOfValue("1")]; } } } } // now we can detach the indexes from the first level datasets baseLevelData[labelIndex] = detachIndexes(baseLevelData[labelIndex]); debug("Building base classifier on full data"); // build base classifier on the full training data baseLevelEnsemble[labelIndex].buildClassifier(baseLevelData[labelIndex]); baseLevelData[labelIndex].delete(); } if (normalize) { normalizePredictions(); } }