List of usage examples for weka.classifiers.meta EnsembleSelection EnsembleSelection
EnsembleSelection
From source file:soccer.core.SimpleClassifier.java
public void evaluate() throws IOException, Exception { Instances data = loader.buildInstances(); NumericToNominal toNominal = new NumericToNominal(); toNominal.setOptions(new String[] { "-R", "5,6,8,9" }); toNominal.setInputFormat(data);//from w w w .java2 s .c o m data = Filter.useFilter(data, toNominal); data.setClassIndex(6); // DataSink.write(ARFF_STRING, data); EnsembleLibrary ensembleLib = new EnsembleLibrary(); ensembleLib.addModel("weka.classifiers.trees.J48"); ensembleLib.addModel("weka.classifiers.bayes.NaiveBayes"); ensembleLib.addModel("weka.classifiers.functions.SMO"); ensembleLib.addModel("weka.classifiers.meta.AdaBoostM1"); ensembleLib.addModel("weka.classifiers.meta.LogitBoost"); ensembleLib.addModel("classifiers.trees.DecisionStump"); ensembleLib.addModel("classifiers.trees.DecisionStump"); EnsembleLibrary.saveLibrary(new File("./ensembleLib.model.xml"), ensembleLib, null); EnsembleSelection model = new EnsembleSelection(); model.setOptions(new String[] { "-L", "./ensembleLib.model.xml", // </path/to/modelLibrary>"-W", path+"esTmp", // </path/to/working/directory> - "-B", "10", // <numModelBags> "-E", "1.0", // <modelRatio>. "-V", "0.25", // <validationRatio> "-H", "100", // <hillClimbIterations> "-I", "1.0", // <sortInitialization> "-X", "2", // <numFolds> "-P", "roc", // <hillclimbMettric> "-A", "forward", // <algorithm> "-R", "true", // - Flag to be selected more than once "-G", "true", // - stops adding models when performance degrades "-O", "true", // - verbose output. "-S", "1", // <num> - Random number seed. "-D", "true" // - run in debug mode }); // double resES[] = evaluate(ensambleSel); // System.out.println("Ensemble Selection\n" // + "\tchurn: " + resES[0] + "\n" // + "\tappetency: " + resES[1] + "\n" // + "\tup-sell: " + resES[2] + "\n" // + "\toverall: " + resES[3] + "\n"); // models.add(new J48()); // models.add(new RandomForest()); // models.add(new NaiveBayes()); // models.add(new AdaBoostM1()); // models.add(new Logistic()); // models.add(new MultilayerPerceptron()); int FOLDS = 5; Evaluation eval = new Evaluation(data); // // for (Classifier model : models) { eval.crossValidateModel(model, data, FOLDS, new Random(1), new Object[] {}); System.out.println(model.getClass().getName() + "\n" + "\tRecall: " + eval.recall(1) + "\n" + "\tPrecision: " + eval.precision(1) + "\n" + "\tF-measure: " + eval.fMeasure(1)); System.out.println(eval.toSummaryString()); // } // LogitBoost cl = new LogitBoost(); // cl.setOptions(new String[] { // "-Q", "-I", "100", "-Z", "4", "-O", "4", "-E", "4" // }); // cl.buildClassifier(data); // Evaluation eval = new Evaluation(data); // eval.crossValidateModel(cl, data, 6, new Random(1), new Object[]{}); // System.out.println(eval.weightedFMeasure()); // System.out.println(cl.graph()); // System.out.println(cl.globalInfo()); }