Example usage for weka.classifiers.meta CostSensitiveClassifier setMinimizeExpectedCost

List of usage examples for weka.classifiers.meta CostSensitiveClassifier setMinimizeExpectedCost

Introduction

In this page you can find the example usage for weka.classifiers.meta CostSensitiveClassifier setMinimizeExpectedCost.

Prototype

public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost) 

Source Link

Document

Set the value of MinimizeExpectedCost.

Usage

From source file:etc.aloe.cscw2013.TrainingImpl.java

License:Open Source License

@Override
public WekaModel train(ExampleSet examples) {
    System.out.println("SMO Options: " + SMO_OPTIONS);
    SMO smo = new SMO();
    try {//  w ww  .j a v  a  2  s.  c om
        smo.setOptions(Utils.splitOptions(SMO_OPTIONS));
    } catch (Exception ex) {
        System.err.println("Unable to configure SMO.");
        System.err.println("\t" + ex.getMessage());
        return null;
    }

    //Build logistic models if desired
    smo.setBuildLogisticModels(isBuildLogisticModel());

    Classifier classifier = smo;

    if (useCostTraining) {
        CostSensitiveClassifier cost = new CostSensitiveClassifier();
        cost.setClassifier(smo);
        CostMatrix matrix = new CostMatrix(2);
        matrix.setElement(0, 0, 0);
        matrix.setElement(0, 1, falsePositiveCost);
        matrix.setElement(1, 0, falseNegativeCost);
        matrix.setElement(1, 1, 0);
        cost.setCostMatrix(matrix);

        classifier = cost;

        System.out.print("Wrapping SMO in CostSensitiveClassifier " + matrix.toMatlab());

        if (useReweighting) {
            cost.setMinimizeExpectedCost(false);
            System.out.println(" using re-weighting.");
        } else {
            cost.setMinimizeExpectedCost(true);
            System.out.println(" using min-cost criterion.");
        }
    }

    try {
        System.out.print("Training SMO on " + examples.size() + " examples... ");
        classifier.buildClassifier(examples.getInstances());
        System.out.println("done.");

        WekaModel model = new WekaModel(classifier);
        return model;
    } catch (Exception ex) {
        System.err.println("Unable to train SMO.");
        System.err.println("\t" + ex.getMessage());
        return null;
    }
}

From source file:jjj.asap.sas.models1.job.BuildBasicMetaCostModels.java

License:Open Source License

@Override
protected void run() throws Exception {

    // validate args
    if (!Bucket.isBucket("datasets", inputBucket)) {
        throw new FileNotFoundException(inputBucket);
    }//from w  w  w . ja  v a 2 s  . c om
    if (!Bucket.isBucket("models", outputBucket)) {
        throw new FileNotFoundException(outputBucket);
    }

    // create prototype classifiers
    Map<String, Classifier> prototypes = new HashMap<String, Classifier>();

    // Bagged REPTrees

    Bagging baggedTrees = new Bagging();
    baggedTrees.setNumExecutionSlots(1);
    baggedTrees.setNumIterations(100);
    baggedTrees.setClassifier(new REPTree());
    baggedTrees.setCalcOutOfBag(false);

    prototypes.put("Bagged-REPTrees", baggedTrees);

    // Bagged SMO

    Bagging baggedSVM = new Bagging();
    baggedSVM.setNumExecutionSlots(1);
    baggedSVM.setNumIterations(100);
    baggedSVM.setClassifier(new SMO());
    baggedSVM.setCalcOutOfBag(false);

    prototypes.put("Bagged-SMO", baggedSVM);

    // Meta Cost model for Naive Bayes

    Bagging bagging = new Bagging();
    bagging.setNumExecutionSlots(1);
    bagging.setNumIterations(100);
    bagging.setClassifier(new NaiveBayes());

    CostSensitiveClassifier meta = new CostSensitiveClassifier();
    meta.setClassifier(bagging);
    meta.setMinimizeExpectedCost(true);

    prototypes.put("CostSensitive-MinimizeExpectedCost-NaiveBayes", bagging);

    // init multi-threading
    Job.startService();
    final Queue<Future<Object>> queue = new LinkedList<Future<Object>>();

    // get the input from the bucket
    List<String> names = Bucket.getBucketItems("datasets", this.inputBucket);
    for (String dsn : names) {

        // for each prototype classifier
        for (Map.Entry<String, Classifier> prototype : prototypes.entrySet()) {

            // 
            // speical logic for meta cost
            //

            Classifier alg = AbstractClassifier.makeCopy(prototype.getValue());

            if (alg instanceof CostSensitiveClassifier) {

                int essaySet = Contest.getEssaySet(dsn);

                String matrix = Contest.getRubrics(essaySet).size() == 3 ? "cost3.txt" : "cost4.txt";

                ((CostSensitiveClassifier) alg)
                        .setCostMatrix(new CostMatrix(new FileReader("/asap/sas/trunk/" + matrix)));

            }

            // use InfoGain to discard useless attributes

            AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();

            classifier.setEvaluator(new InfoGainAttributeEval());

            Ranker ranker = new Ranker();
            ranker.setThreshold(0.0001);
            classifier.setSearch(ranker);

            classifier.setClassifier(alg);

            queue.add(Job.submit(
                    new ModelBuilder(dsn, "InfoGain-" + prototype.getKey(), classifier, this.outputBucket)));
        }
    }

    // wait on complete
    Progress progress = new Progress(queue.size(), this.getClass().getSimpleName());
    while (!queue.isEmpty()) {
        try {
            queue.remove().get();
        } catch (Exception e) {
            Job.log("ERROR", e.toString());
        }
        progress.tick();
    }
    progress.done();
    Job.stopService();

}