Example usage for weka.classifiers.lazy KStar KStar

List of usage examples for weka.classifiers.lazy KStar KStar

Introduction

In this page you can find the example usage for weka.classifiers.lazy KStar KStar.

Prototype

KStar

Source Link

Usage

From source file:au.edu.usyd.it.yangpy.snp.Ensemble.java

License:Open Source License

public void ensemble(String mode) throws Exception {

    numInstances = test.numInstances();//from ww  w .ja v  a 2  s. com
    numClasses = test.numClasses();
    givenValue = new double[numInstances];
    predictDistribution = new double[numClassifiers][numInstances][numClasses];
    predictValue = new double[numClassifiers][numInstances];
    voteValue = new double[numInstances][numClasses];

    // Setting the given class values of the test instances.
    for (int i = 0; i < numInstances; i++) {
        givenValue[i] = test.instance(i).classValue();
    }

    // Calculating the predicted class values using each classifier respectively.
    // J48 coverTree1NN KStar coverTree3NN coverTree5NN

    J48 tree = new J48();
    tree.setUnpruned(true);
    aucClassifiers[0] = classify(tree, 0);

    KStar kstar = new KStar();
    aucClassifiers[1] = classify(kstar, 1);

    IBk ctnn1 = new IBk(1);
    CoverTree search = new CoverTree();
    ctnn1.setNearestNeighbourSearchAlgorithm(search);
    aucClassifiers[2] = classify(ctnn1, 2);

    IBk ctnn3 = new IBk(3);
    ctnn3.setNearestNeighbourSearchAlgorithm(search);
    aucClassifiers[3] = classify(ctnn3, 3);

    IBk ctnn5 = new IBk(5);
    ctnn5.setNearestNeighbourSearchAlgorithm(search);
    aucClassifiers[4] = classify(ctnn5, 4);

    // Print the classification results if in print mode.
    if (mode.equals("v")) {
        System.out.println("J48   AUC: " + aucClassifiers[0]);
        System.out.println("KStar AUC: " + aucClassifiers[1]);
        System.out.println("CTNN1 AUC: " + aucClassifiers[2]);
        System.out.println("CTNN3 AUC: " + aucClassifiers[3]);
        System.out.println("CTNN5 AUC: " + aucClassifiers[4]);
        System.out.println("   -         -   ");
    }
}

From source file:LeerArchivo.Leer.java

public void leerArchivoArff() {
    try {//from ww w . j  av a 2s .co  m
        // create J48
        Classifier cls = new KStar();
        // train
        Instances inst = new Instances(new BufferedReader(new FileReader("../datos.arff")));

        inst.setClassIndex(inst.numAttributes() - 1);
        cls.buildClassifier(inst);
        // serialize model
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("./KStar.model"));
        oos.writeObject(cls);
        oos.flush();
        oos.close();
    } catch (IOException ex) {
        Logger.getLogger(Leer.class.getName()).log(Level.SEVERE, null, ex);
    } catch (Exception ex) {
        Logger.getLogger(Leer.class.getName()).log(Level.SEVERE, null, ex);
    }
}