Example usage for weka.classifiers.lazy IBk IBk

List of usage examples for weka.classifiers.lazy IBk IBk

Introduction

In this page you can find the example usage for weka.classifiers.lazy IBk IBk.

Prototype

public IBk() 

Source Link

Document

IB1 classifer.

Usage

From source file:ClassificationClass.java

public Evaluation cls_knn(Instances data) {
    Evaluation eval = null;/*from www.  j a  va  2  s .c  o m*/
    try {
        Classifier classifier;
        data.setClassIndex(data.numAttributes() - 1);
        classifier = new IBk();
        classifier.buildClassifier(data);
        eval = new Evaluation(data);
        eval.evaluateModel(classifier, data);

        System.out.println(eval.weightedFMeasure());
    } catch (Exception ex) {
        Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex);
    }
    return eval;
}

From source file:MainFrame.java

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {//GEN-FIRST:event_jButton1MouseClicked
    double[][] food_sources = new double[0][0];
    Classifier classifier;//from www.  j a va  2 s. c o m
    Evaluation eval;
    int N;
    PreparingSteps pr = new PreparingSteps();
    int iterationnumber = Integer.parseInt(iterationnumber_cb.getSelectedItem().toString());
    double modificationRate = Double.parseDouble(modificationrate_cb.getSelectedItem().toString());
    int foldnumber = Integer.parseInt(crossvalfold_cb.getSelectedItem().toString());
    //statuslabel.setText("Calculating...");
    try {
        N = pr.getReadFileData(path).numAttributes();
        Instances data = pr.getReadFileData(path);

        food_sources = pr.createFoodSources(data.numAttributes(), food_sources); // food sources olusturuluyor

        //////////////////////////////////////////////////////// + 

        Debug.Random rand = new Debug.Random(1);

        classifier = new IBk(); // snflandrc olusturuldu
        eval = new Evaluation(data);

        for (int i = 0; i < N - 1; i++) {
            food_source = new double[N];

            for (int j = 0; j < N; j++) {
                food_source[j] = food_sources[i][j];
            }
            Instances data1 = pr.getReadFileData(path);
            food_sources[i][N - 1] = pr.getSourceFitnessValue(foldnumber, N, rand, data1, food_source, eval,
                    classifier);

        }

        ////////////////// +++++

        BeesProcesses bees = new BeesProcesses();
        double[] neighbor;
        int e = 0;

        while (e < iterationnumber) {
            System.out.println("iter:" + e);
            for (int i = 0; i < N - 1; i++) {
                neighbor = new double[N];
                food_source = new double[N];

                for (int j = 0; j < N; j++)
                    food_source[j] = food_sources[i][j];

                Instances data2 = pr.getReadFileData(path);
                neighbor = bees.employedBeeProcess(food_source, modificationRate, i); // komsu olusturuldu
                neighbor[N - 1] = pr.getSourceFitnessValue(foldnumber, N, rand, data2, neighbor, eval,
                        classifier); // komsunun fitness degeri bulunuyor
                double a = food_source[N - 1];
                double b = neighbor[N - 1];
                if (b > a) {
                    for (int j = 0; j < N; j++) {
                        food_sources[i][j] = neighbor[j];
                    }
                }

            }

            e++;
        } // while sonu

        double[][] onlooker_foodsources = new double[N - 1][N];
        onlooker_foodsources = bees.onlookerBeeProcess(N, 0.5);
        for (int i = 0; i < N - 1; i++) {
            double[] onlooker_food_source = new double[N];

            for (int j = 0; j < N; j++) {
                onlooker_food_source[j] = onlooker_foodsources[i][j];
            }

            Instances data3 = pr.getReadFileData(path);
            onlooker_foodsources[i][N - 1] = pr.getSourceFitnessValue(foldnumber, N, rand, data3,
                    onlooker_food_source, eval, classifier);

        }

        int m = 0;
        while (m < 20) {
            double[][] onlooker_foodsources2 = new double[N - 1][N];
            onlooker_foodsources2 = bees.onlookerBeeProcess(N, 0.5);

            for (int i = 0; i < N - 1; i++) {
                double[] onlooker_food_source = new double[N];

                for (int j = 0; j < N; j++) {
                    onlooker_food_source[j] = onlooker_foodsources2[i][j];
                }

                Instances data4 = pr.getReadFileData(path);
                onlooker_food_source[N - 1] = pr.getSourceFitnessValue(foldnumber, N, rand, data4,
                        onlooker_food_source, eval, classifier);

                for (int j = 0; j < N - 1; j++) {
                    if (onlooker_foodsources[j][N - 1] < onlooker_foodsources2[j][N - 1]) {
                        for (int k = 0; k < N; k++) {
                            onlooker_foodsources[j][k] = onlooker_foodsources[j][k];
                        }
                    }
                }
            }
            m++;
        }

        /////// feature selection
        double[] selected_features = new double[N];

        double max_fit = 0.0;
        for (int i = 0; i < N - 1; i++) {
            if (food_sources[i][N - 1] > max_fit) {
                max_fit = food_sources[i][N - 1];
                for (int j = 0; j < N; j++) {
                    selected_features[j] = food_sources[i][j];
                }
            }

        }

        for (int i = 0; i < N - 1; i++) {
            if (onlooker_foodsources[i][N - 1] > max_fit) {
                max_fit = food_sources[i][N - 1];
                for (int j = 0; j < N; j++) {
                    selected_features[j] = onlooker_foodsources[i][j];
                }
            }

        }

        ////////////
        System.out.println(" ");

        String sf_wfmeasure = "";
        for (int i = 0; i < N; i++) {
            System.out.print(selected_features[i] + " ");
            if (i == N - 1) {
                sf_wfmeasure = Double.toString(selected_features[i]);
            } else {
                if (selected_features[i] == 1.0)
                    sf_indexes = sf_indexes + Integer.toString(i) + ",";
            }
        }

        selectedfeaturesindexes_tf.setText(sf_indexes);
        //weightedfmeasure_tf.setText(sf_wfmeasure);
        //statuslabel.setText("Finished.");

    } catch (Exception ex) {
        Logger.getLogger(MainFrame.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:at.aictopic1.sentimentanalysis.machinelearning.impl.kNearestNeighbourClassifier.java

/**
 * sets classifier/*  w w w.j  ava2s.  com*/
 */
@Override
protected void setClassifier() {

    //classifier
    this.usedClassifier = new IBk();
    //.. other options
    this.fcClassifier.setClassifier(this.usedClassifier);
}

From source file:Classifiers.BRkNN.java

License:Open Source License

/**
 * Select the best value for k by hold-one-out cross-validation. Hamming
 * Loss is minimized//from ww w. j  a v  a2 s. c  om
 *
 * @throws Exception Potential exception thrown. To be handled in an upper level.
 */
private void crossValidate() throws Exception {
    try {
        // the performance for each different k
        double[] hammingLoss = new double[cvMaxK];

        for (int i = 0; i < cvMaxK; i++) {
            hammingLoss[i] = 0;
        }

        Instances dataSet = train;
        Instance instance; // the hold out instance
        Instances neighbours; // the neighboring instances
        double[] origDistances, convertedDistances;
        for (int i = 0; i < dataSet.numInstances(); i++) {
            if (getDebug() && (i % 50 == 0)) {
                debug("Cross validating " + i + "/" + dataSet.numInstances() + "\r");
            }
            instance = dataSet.instance(i);
            neighbours = lnn.kNearestNeighbours(instance, cvMaxK);
            origDistances = lnn.getDistances();

            // gathering the true labels for the instance
            boolean[] trueLabels = new boolean[numLabels];
            for (int counter = 0; counter < numLabels; counter++) {
                int classIdx = labelIndices[counter];
                String classValue = instance.attribute(classIdx).value((int) instance.value(classIdx));
                trueLabels[counter] = classValue.equals("1");
            }
            // calculate the performance metric for each different k
            for (int j = cvMaxK; j > 0; j--) {
                convertedDistances = new double[origDistances.length];
                System.arraycopy(origDistances, 0, convertedDistances, 0, origDistances.length);
                double[] confidences = this.getConfidences(neighbours, convertedDistances);
                boolean[] bipartition = null;

                switch (extension) {
                case NONE: // BRknn
                    MultiLabelOutput results;
                    results = new MultiLabelOutput(confidences, 0.5);
                    bipartition = results.getBipartition();
                    break;
                case EXTA: // BRknn-a
                    bipartition = labelsFromConfidences2(confidences);
                    break;
                case EXTB: // BRknn-b
                    bipartition = labelsFromConfidences3(confidences);
                    break;
                }

                double symmetricDifference = 0; // |Y xor Z|
                for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) {
                    boolean actual = trueLabels[labelIndex];
                    boolean predicted = bipartition[labelIndex];

                    if (predicted != actual) {
                        symmetricDifference++;
                    }
                }
                hammingLoss[j - 1] += (symmetricDifference / numLabels);

                neighbours = new IBk().pruneToK(neighbours, convertedDistances, j - 1);
            }
        }

        // Display the results of the cross-validation
        if (getDebug()) {
            for (int i = cvMaxK; i > 0; i--) {
                debug("Hold-one-out performance of " + (i) + " neighbors ");
                debug("(Hamming Loss) = " + hammingLoss[i - 1] / dataSet.numInstances());
            }
        }

        // Check through the performance stats and select the best
        // k value (or the lowest k if more than one best)
        double[] searchStats = hammingLoss;

        double bestPerformance = Double.NaN;
        int bestK = 1;
        for (int i = 0; i < cvMaxK; i++) {
            if (Double.isNaN(bestPerformance) || (bestPerformance > searchStats[i])) {
                bestPerformance = searchStats[i];
                bestK = i + 1;
            }
        }
        numOfNeighbors = bestK;
        if (getDebug()) {
            System.err.println("Selected k = " + bestK);
        }

    } catch (Exception ex) {
        throw new Error("Couldn't optimize by cross-validation: " + ex.getMessage());
    }
}

From source file:com.rokittech.ml.server.utils.MLUtils.java

License:Open Source License

public static Classifier getClassifier(String mlAlgorithm) {
    notEmpty(mlAlgorithm);/*from   w w w .  j  av  a 2 s  .c  o  m*/
    Classifier classifier;
    switch (mlAlgorithm.toUpperCase()) {
    case "J48": {
        classifier = new J48();
        break;
    }
    case "IBK": {
        classifier = new IBk();
        break;
    }
    case "NAIVE_BAYES": {
        classifier = new NaiveBayes();
        break;
    }
    case "RANDOM_TREE": {
        classifier = new RandomTree();
        break;
    }
    case "RANDOM_FOREST": {
        classifier = new RandomForest();
        break;
    }
    case "BOOSTING": {
        classifier = new DecisionStump();
        break;
    }
    case "BAGGING": {
        classifier = new Bagging();
        break;
    }
    default:
        throw new UnsupportedOperationException("Classifier " + mlAlgorithm + " is not supported.");
    }
    return classifier;
}

From source file:fr.unice.i3s.rockflows.experiments.main.IntermediateExecutor.java

private List<InfoClassifier> inputClassifier(Dataset original) throws Exception {
    List<InfoClassifier> cls = new ArrayList<>();
    int id = 0;//from   w w w .  j  a  v a 2 s. com
    //LogisticRegression:
    InfoClassifier ic1 = new InfoClassifier(id++);
    ic1.classifier = new Logistic();
    ic1.name = "Logistic Regression";
    ic1.properties.requireNumericDataset = true;
    cls.add(ic1);
    //SVM:
    InfoClassifier ic2 = new InfoClassifier(id++);
    LibSVM ccc = new LibSVM();
    //disable 
    ccc.setOptions(new String[] { "-J", //Turn off nominal to binary conversion.
            "-V" //Turn off missing value replacement
    });
    //ccc.setSVMType(new SelectedTag(LibSVM.SVMTYPE_C_SVC, LibSVM.TAGS_SVMTYPE));
    //ccc.setKernelType(new SelectedTag(LibSVM.KERNELTYPE_RBF, LibSVM.TAGS_KERNELTYPE));
    //ccc.setEps(0.001); //tolerance
    ic2.classifier = ccc;
    ic2.name = "Svm";
    ic2.properties.requireNumericDataset = true;
    cls.add(ic2);
    //J48:
    InfoClassifier ic3 = new InfoClassifier(id++);
    ic3.classifier = new J48();
    ic3.name = "J48";
    ic3.properties.manageMissingValues = true;
    cls.add(ic3);
    //NBTree:
    InfoClassifier ic4 = new InfoClassifier(id++);
    ic4.classifier = new NBTree();
    ic4.name = "NBTree";
    ic4.properties.manageMissingValues = true;
    cls.add(ic4);
    //RandomForest: 
    InfoClassifier ic5 = new InfoClassifier(id++);
    RandomForest ccc2 = new RandomForest();
    ccc2.setNumTrees(500);
    ccc2.setMaxDepth(0);
    ic5.classifier = ccc2;
    ic5.name = "Random Forest";
    ic5.properties.manageMissingValues = true;
    cls.add(ic5);
    //Logistic Model Trees (LMT):
    InfoClassifier ic6 = new InfoClassifier(id++);
    ic6.classifier = new LMT();
    ic6.name = "Logistic Model Tree";
    ic6.properties.manageMissingValues = true;
    cls.add(ic6);
    //Alternating Decision Trees (ADTree):
    InfoClassifier ic7 = new InfoClassifier(id++);
    if (original.trainingSet.numClasses() > 2) {
        MultiClassClassifier mc = new MultiClassClassifier();
        mc.setOptions(new String[] { "-M", "3" }); //1 vs 1
        mc.setClassifier(new ADTree());
        ic7.classifier = mc;
        ic7.name = "1-vs-1 Alternating Decision Tree";
    } else {
        ic7.classifier = new ADTree();
        ic7.name = "Alternating Decision Tree";
    }
    ic7.properties.manageMultiClass = false;
    ic7.properties.manageMissingValues = true;
    cls.add(ic7);
    //Naive Bayes:
    InfoClassifier ic8 = new InfoClassifier(id++);
    ic8.classifier = new NaiveBayes();
    ic8.name = "Naive Bayes";
    ic8.properties.manageMissingValues = true;
    cls.add(ic8);
    //Bayesian Networks:
    /*
    All Bayes network algorithms implemented in Weka assume the following for the data set: 
    all variables are discrete finite variables. If you have a data set with continuous variables, 
    you can use the following filter to discretize them: 
    weka.filters.unsupervised.attribute.Discretize 
    no instances have missing values. If there are missing values in the data set, 
    values are filled in using the following filter: 
    weka.filters.unsupervised.attribute.ReplaceMissingValues 
            
    The first step performed by buildClassifier is checking if the data set fulfills those assumptions. 
    If those assumptions are not met, 
    the data set is automatically filtered and a warning is written to STDERR.2         
     */
    InfoClassifier ic9 = new InfoClassifier(id++);
    ic9.classifier = new BayesNet();
    ic9.name = "Bayesian Network";
    ic9.properties.requireNominalDataset = true;
    cls.add(ic9);
    //IBK
    InfoClassifier ic10 = new InfoClassifier(id++);
    ic10.classifier = new IBk();
    ic10.name = "IBk";
    ic10.properties.manageMissingValues = true;
    cls.add(ic10);
    //JRip:
    InfoClassifier ic11 = new InfoClassifier(id++);
    ic11.classifier = new JRip();
    ic11.name = "JRip";
    ic11.properties.manageMissingValues = true;
    cls.add(ic11);
    //MultilayerPerceptron(MLP):
    InfoClassifier ic12 = new InfoClassifier(id++);
    ic12.classifier = new MultilayerPerceptron();
    ic12.name = "Multillayer Perceptron";
    ic12.properties.requireNumericDataset = true;
    cls.add(ic12);
    //Bagging RepTree:
    InfoClassifier ic14 = new InfoClassifier(id++);
    REPTree base3 = new REPTree();
    Bagging ccc4 = new Bagging();
    ccc4.setClassifier(base3);
    ic14.classifier = ccc4;
    ic14.name = "Bagging RepTree";
    ic14.properties.manageMissingValues = true;
    cls.add(ic14);
    //Bagging J48
    InfoClassifier ic15 = new InfoClassifier(id++);
    Bagging ccc5 = new Bagging();
    ccc5.setClassifier(new J48());
    ic15.classifier = ccc5;
    ic15.name = "Bagging J48";
    ic15.properties.manageMissingValues = true;
    cls.add(ic15);
    //Bagging NBTree
    InfoClassifier ic16 = new InfoClassifier(id++);
    Bagging ccc6 = new Bagging();
    ccc6.setClassifier(new NBTree());
    ic16.classifier = ccc6;
    ic16.name = "Bagging NBTree";
    ic16.properties.manageMissingValues = true;
    cls.add(ic16);

    //Bagging OneR:
    InfoClassifier ic17 = new InfoClassifier(id++);
    Bagging ccc7 = new Bagging();
    ccc7.setClassifier(new OneR());
    ic17.classifier = ccc7;
    ic17.name = "Bagging OneR";
    ic17.properties.requireNominalDataset = true;
    ic17.properties.manageMissingValues = true;
    cls.add(ic17);
    //Bagging Jrip
    InfoClassifier ic18 = new InfoClassifier(id++);
    Bagging ccc8 = new Bagging();
    ccc8.setClassifier(new JRip());
    ic18.classifier = ccc8;
    ic18.name = "Bagging JRip";
    ic18.properties.manageMissingValues = true;
    cls.add(ic18);
    //MultiboostAB DecisionStump
    InfoClassifier ic24 = new InfoClassifier(id++);
    MultiBoostAB ccc14 = new MultiBoostAB();
    ccc14.setClassifier(new DecisionStump());
    ic24.classifier = ccc14;
    ic24.name = "MultiboostAB DecisionStump";
    ic24.properties.manageMissingValues = true;
    cls.add(ic24);
    //MultiboostAB OneR
    InfoClassifier ic25 = new InfoClassifier(id++);
    MultiBoostAB ccc15 = new MultiBoostAB();
    ccc15.setClassifier(new OneR());
    ic25.classifier = ccc15;
    ic25.name = "MultiboostAB OneR";
    ic25.properties.requireNominalDataset = true;
    cls.add(ic25);
    //MultiboostAB J48
    InfoClassifier ic27 = new InfoClassifier(id++);
    MultiBoostAB ccc17 = new MultiBoostAB();
    ccc17.setClassifier(new J48());
    ic27.classifier = ccc17;
    ic27.name = "MultiboostAB J48";
    ic27.properties.manageMissingValues = true;
    cls.add(ic27);
    //MultiboostAB Jrip
    InfoClassifier ic28 = new InfoClassifier(id++);
    MultiBoostAB ccc18 = new MultiBoostAB();
    ccc18.setClassifier(new JRip());
    ic28.classifier = ccc18;
    ic28.name = "MultiboostAB JRip";
    cls.add(ic28);
    //MultiboostAB NBTree
    InfoClassifier ic29 = new InfoClassifier(id++);
    MultiBoostAB ccc19 = new MultiBoostAB();
    ccc19.setClassifier(new NBTree());
    ic29.classifier = ccc19;
    ic29.name = "MultiboostAB NBTree";
    ic29.properties.manageMissingValues = true;
    cls.add(ic29);
    //RotationForest RandomTree
    InfoClassifier ic32 = new InfoClassifier(id++);
    RotationForest ccc21 = new RotationForest();
    RandomTree rtr5 = new RandomTree();
    rtr5.setMinNum(2);
    rtr5.setAllowUnclassifiedInstances(true);
    ccc21.setClassifier(rtr5);
    ic32.classifier = ccc21;
    ic32.name = "RotationForest RandomTree";
    ic32.properties.manageMissingValues = true;
    cls.add(ic32);
    //RotationForest J48:
    InfoClassifier ic33 = new InfoClassifier(id++);
    J48 base6 = new J48();
    RotationForest ccc22 = new RotationForest();
    ccc22.setClassifier(base6);
    ic33.classifier = ccc22;
    ic33.name = "RotationForest J48";
    ic33.properties.manageMissingValues = true;
    cls.add(ic33);
    //RandomCommittee RandomTree:
    InfoClassifier ic34 = new InfoClassifier(id++);
    RandomTree rtr4 = new RandomTree();
    rtr4.setMinNum(2);
    rtr4.setAllowUnclassifiedInstances(true);
    RandomCommittee ccc23 = new RandomCommittee();
    ccc23.setClassifier(rtr4);
    ic34.classifier = ccc23;
    ic34.name = "RandomComittee RandomTree";
    ic34.properties.manageMissingValues = true;
    cls.add(ic34);
    //Class via Clustering: SimpleKMeans
    //N.B: it can't handle date attributes
    InfoClassifier ic35 = new InfoClassifier(id++);
    ClassificationViaClustering ccc24 = new ClassificationViaClustering();
    SimpleKMeans km = new SimpleKMeans();
    km.setNumClusters(original.trainingSet.numClasses());
    ccc24.setClusterer(km);
    ic35.classifier = ccc24;
    ic35.name = "Classification via Clustering: KMeans";
    ic35.properties.requireNumericDataset = true;
    cls.add(ic35);
    //Class via Clustering: FarthestFirst
    InfoClassifier ic36 = new InfoClassifier(id++);
    ClassificationViaClustering ccc25 = new ClassificationViaClustering();
    FarthestFirst ff = new FarthestFirst();
    ff.setNumClusters(original.trainingSet.numClasses());
    ccc25.setClusterer(ff);
    ic36.classifier = ccc25;
    ic36.name = "Classification via Clustering: FarthestFirst";
    ic36.properties.requireNumericDataset = true;
    cls.add(ic36);
    //SMO
    InfoClassifier ic37 = new InfoClassifier(id++);
    ic37.classifier = new SMO();
    ic37.properties.requireNumericDataset = true;
    ic37.properties.manageMultiClass = false;
    ic37.name = "Smo";
    cls.add(ic37);
    //Random Subspace
    InfoClassifier ic38 = new InfoClassifier(id++);
    RandomSubSpace sub = new RandomSubSpace();
    sub.setClassifier(new REPTree());
    ic38.classifier = sub;
    ic38.name = "Random Subspaces of RepTree";
    ic38.properties.manageMissingValues = true;
    cls.add(ic38);
    //PART rule based
    InfoClassifier ic39 = new InfoClassifier(id++);
    PART p39 = new PART();
    p39.setOptions(new String[] { "-C", "0.5" });
    ic39.classifier = new PART();
    ic39.name = "PART";
    ic39.properties.manageMissingValues = true;
    cls.add(ic39);
    //Decision-Table / Naive Bayes
    InfoClassifier ic40 = new InfoClassifier(id++);
    ic40.classifier = new DTNB();
    ic40.name = "DTNB";
    ic40.properties.manageMissingValues = true;
    cls.add(ic40);
    //Ridor Rule based
    InfoClassifier ic41 = new InfoClassifier(id++);
    ic41.classifier = new Ridor();
    ic41.name = "Ridor";
    ic41.properties.manageMissingValues = true;
    cls.add(ic41);
    //Decision Table
    InfoClassifier ic42 = new InfoClassifier(id++);
    ic42.classifier = new DecisionTable();
    ic42.name = "Decision Table";
    ic42.properties.manageMissingValues = true;
    cls.add(ic42);
    //Conjunctive Rule
    InfoClassifier ic43 = new InfoClassifier(id++);
    ic43.classifier = new ConjunctiveRule();
    ic43.name = "Conjunctive Rule";
    ic43.properties.manageMissingValues = true;
    cls.add(ic43);
    //LogitBoost Decision Stump
    InfoClassifier ic44 = new InfoClassifier(id++);
    LogitBoost lb = new LogitBoost();
    lb.setOptions(new String[] { "-L", "1.79" });
    lb.setClassifier(new DecisionStump());
    ic44.classifier = lb;
    ic44.name = "LogitBoost Decision Stump";
    ic44.properties.manageMissingValues = true;
    cls.add(ic44);
    //Raced Incremental Logit Boost, Decision Stump
    InfoClassifier ic45 = new InfoClassifier(id++);
    RacedIncrementalLogitBoost rlb = new RacedIncrementalLogitBoost();
    rlb.setClassifier(new DecisionStump());
    ic45.classifier = rlb;
    ic45.name = "Raced Incremental Logit Boost, Decision Stumps";
    ic45.properties.manageMissingValues = true;
    cls.add(ic45);
    //AdaboostM1 decision stump
    InfoClassifier ic46 = new InfoClassifier(id++);
    AdaBoostM1 adm = new AdaBoostM1();
    adm.setClassifier(new DecisionStump());
    ic46.classifier = adm;
    ic46.name = "AdaboostM1, Decision Stumps";
    ic46.properties.manageMissingValues = true;
    cls.add(ic46);
    //AdaboostM1 J48
    InfoClassifier ic47 = new InfoClassifier(id++);
    AdaBoostM1 adm2 = new AdaBoostM1();
    adm2.setClassifier(new J48());
    ic47.classifier = adm2;
    ic47.name = "AdaboostM1, J48";
    ic47.properties.manageMissingValues = true;
    cls.add(ic47);
    //MultiboostAb Decision Table
    InfoClassifier ic48 = new InfoClassifier(id++);
    MultiBoostAB mba = new MultiBoostAB();
    mba.setClassifier(new DecisionTable());
    ic48.classifier = mba;
    ic48.name = "MultiboostAB, Decision Table";
    ic48.properties.manageMissingValues = true;
    cls.add(ic48);
    //Multiboost NaiveBayes
    InfoClassifier ic49 = new InfoClassifier(id++);
    MultiBoostAB mba2 = new MultiBoostAB();
    mba2.setClassifier(new NaiveBayes());
    ic49.classifier = mba2;
    ic49.name = "MultiboostAB, Naive Bayes";
    ic49.properties.manageMissingValues = true;
    cls.add(ic49);
    //Multiboost PART
    InfoClassifier ic50 = new InfoClassifier(id++);
    MultiBoostAB mba3 = new MultiBoostAB();
    mba3.setClassifier(new PART());
    ic50.classifier = mba3;
    ic50.name = "MultiboostAB, PART";
    ic50.properties.manageMissingValues = true;
    cls.add(ic50);
    //Multiboost Random Tree
    InfoClassifier ic51 = new InfoClassifier(id++);
    MultiBoostAB mba4 = new MultiBoostAB();
    RandomTree rtr3 = new RandomTree();
    rtr3.setMinNum(2);
    rtr3.setAllowUnclassifiedInstances(true);
    mba4.setClassifier(rtr3);
    ic51.classifier = mba4;
    ic51.name = "MultiboostAB, RandomTree";
    ic51.properties.manageMissingValues = true;
    cls.add(ic51);
    //Multiboost Rep Tree
    InfoClassifier ic52 = new InfoClassifier(id++);
    MultiBoostAB mba5 = new MultiBoostAB();
    mba5.setClassifier(new REPTree());
    ic52.classifier = mba5;
    ic52.name = "MultiboostAB, RepTree";
    ic52.properties.manageMissingValues = true;
    cls.add(ic52);
    //Bagging Decision Stump
    InfoClassifier ic53 = new InfoClassifier(id++);
    Bagging bag = new Bagging();
    bag.setClassifier(new DecisionStump());
    ic53.classifier = bag;
    ic53.name = "Bagging Decision Stump";
    ic53.properties.manageMissingValues = true;
    cls.add(ic53);
    //Bagging Decision Table
    InfoClassifier ic54 = new InfoClassifier(id++);
    Bagging bag1 = new Bagging();
    bag1.setClassifier(new DecisionTable());
    ic54.classifier = bag1;
    ic54.name = "Bagging Decision Table";
    ic54.properties.manageMissingValues = true;
    cls.add(ic54);
    //Bagging HyperPipes
    InfoClassifier ic55 = new InfoClassifier(id++);
    Bagging bag2 = new Bagging();
    bag2.setClassifier(new HyperPipes());
    ic55.classifier = bag2;
    ic55.name = "Bagging Hyper Pipes";
    cls.add(ic55);
    //Bagging Naive Bayes
    InfoClassifier ic56 = new InfoClassifier(id++);
    Bagging bag3 = new Bagging();
    bag3.setClassifier(new NaiveBayes());
    ic56.classifier = bag3;
    ic56.name = "Bagging Naive Bayes";
    ic56.properties.manageMissingValues = true;
    cls.add(ic56);
    //Bagging PART
    InfoClassifier ic57 = new InfoClassifier(id++);
    Bagging bag4 = new Bagging();
    bag4.setClassifier(new PART());
    ic57.classifier = bag4;
    ic57.name = "Bagging PART";
    ic57.properties.manageMissingValues = true;
    cls.add(ic57);
    //Bagging RandomTree
    InfoClassifier ic58 = new InfoClassifier(id++);
    Bagging bag5 = new Bagging();
    RandomTree rtr2 = new RandomTree();
    rtr2.setMinNum(2);
    rtr2.setAllowUnclassifiedInstances(true);
    bag5.setClassifier(rtr2);
    ic58.classifier = bag5;
    ic58.name = "Bagging RandomTree";
    ic58.properties.manageMissingValues = true;
    cls.add(ic58);
    //NNge
    InfoClassifier ic59 = new InfoClassifier(id++);
    NNge nng = new NNge();
    nng.setNumFoldersMIOption(1);
    nng.setNumAttemptsOfGeneOption(5);
    ic59.classifier = nng;
    ic59.name = "NNge";
    cls.add(ic59);
    //OrdinalClassClassifier J48
    InfoClassifier ic60 = new InfoClassifier(id++);
    OrdinalClassClassifier occ = new OrdinalClassClassifier();
    occ.setClassifier(new J48());
    ic60.classifier = occ;
    ic60.name = "OrdinalClassClassifier J48";
    ic60.properties.manageMissingValues = true;
    cls.add(ic60);
    //Hyper Pipes
    InfoClassifier ic61 = new InfoClassifier(id++);
    ic61.classifier = new HyperPipes();
    ic61.name = "Hyper Pipes";
    cls.add(ic61);
    //Classification via Regression, M5P used by default
    InfoClassifier ic62 = new InfoClassifier(id++);
    ic62.classifier = new ClassificationViaRegression();
    ic62.name = "Classification ViaRegression, M5P";
    ic62.properties.requireNumericDataset = true;
    cls.add(ic62);
    //RBF Network
    InfoClassifier ic64 = new InfoClassifier(id++);
    RBFNetwork rbf = new RBFNetwork();
    rbf.setRidge(0.00000001); //10^-8
    rbf.setNumClusters(original.trainingSet.numAttributes() / 2);
    ic64.classifier = rbf;
    ic64.name = "RBF Network";
    ic64.properties.requireNumericDataset = true;
    if (!original.properties.isStandardized) {
        ic64.properties.compatibleWithDataset = false;
    }
    cls.add(ic64);
    //RandomTree
    InfoClassifier ic66 = new InfoClassifier(id++);
    RandomTree rtr = new RandomTree();
    rtr.setMinNum(2);
    rtr.setAllowUnclassifiedInstances(true);
    ic66.classifier = rtr;
    ic66.name = "Random Tree";
    ic66.properties.manageMissingValues = true;
    cls.add(ic66);
    //RepTree
    InfoClassifier ic67 = new InfoClassifier(id++);
    REPTree rept = new REPTree();
    ic67.classifier = rept;
    ic67.name = "Rep Tree";
    ic67.properties.manageMissingValues = true;
    cls.add(ic67);
    //Decision Stump
    InfoClassifier ic68 = new InfoClassifier(id++);
    ic68.classifier = new DecisionStump();
    ic68.name = "Decision Stump";
    ic68.properties.manageMissingValues = true;
    cls.add(ic68);
    //OneR
    InfoClassifier ic69 = new InfoClassifier(id++);
    ic69.classifier = new OneR();
    ic69.name = "OneR";
    ic69.properties.requireNominalDataset = true;
    ic69.properties.manageMissingValues = true;
    cls.add(ic69);
    //LWL
    InfoClassifier ic71 = new InfoClassifier(id++);
    ic71.classifier = new LWL();
    ic71.name = "LWL";
    ic71.properties.manageMissingValues = true;
    cls.add(ic71);
    //Bagging LWL
    InfoClassifier ic72 = new InfoClassifier(id++);
    Bagging bg72 = new Bagging();
    bg72.setClassifier(new LWL());
    ic72.classifier = bg72;
    ic72.name = "Bagging LWL";
    ic72.properties.manageMissingValues = true;
    cls.add(ic72);
    //Decorate
    InfoClassifier ic73 = new InfoClassifier(id++);
    ic73.classifier = new Decorate();
    ic73.name = "Decorate";
    ic73.properties.manageMissingValues = true;
    ic73.properties.minNumTrainingInstances = 15;
    this.indexDecorate = id - 1;
    cls.add(ic73);
    //Dagging
    InfoClassifier ic74 = new InfoClassifier(id++);
    Dagging dng = new Dagging();
    dng.setClassifier(new SMO());
    dng.setNumFolds(4);
    ic74.classifier = dng;
    ic74.properties.requireNumericDataset = true;
    ic74.properties.manageMultiClass = false;
    ic74.name = "Dagging SMO";
    cls.add(ic74);
    //IB1
    InfoClassifier ic75 = new InfoClassifier(id++);
    ic75.classifier = new IB1();
    ic75.properties.manageMissingValues = true;
    ic75.name = "IB1";
    cls.add(ic75);
    //Simple Logistic
    InfoClassifier ic76 = new InfoClassifier(id++);
    ic76.classifier = new SimpleLogistic();
    ic76.properties.requireNumericDataset = true;
    ic76.name = "Simple Logistic";
    cls.add(ic76);
    //VFI
    InfoClassifier ic77 = new InfoClassifier(id++);
    ic77.classifier = new VFI();
    ic77.properties.manageMissingValues = true;
    ic77.name = "VFI";
    cls.add(ic77);

    //check if classifier satisfies the constraints of min #instances
    checkMinNumInstanes(cls, original.trainingSet);

    return cls;
}

From source file:hero.unstable.util.classification.wekaClassifier.java

public wekaClassifier(String nameClassifier, String classifierOpt, int seed, int folds) throws Exception {
    String[] opts = classifierOpt.split(" ");
    this.seed = seed;
    this.folds = folds;

    // Create classifier
    if (nameClassifier.equals("AdaBoostM1")) {
        this.classifier = new AdaBoostM1();
    } else if (nameClassifier.equals("J48")) {
        this.classifier = new AdaBoostM1();
    } else if (nameClassifier.equals("RandomForest")) {
        this.classifier = new RandomForest();
    } else if (nameClassifier.equals("Bayes")) {
        this.classifier = new BayesNet();
    } else if (nameClassifier.equals("knn")) {
        this.classifier = new IBk();
    } else if (nameClassifier.equals("ZeroR")) {
        this.classifier = new ZeroR();
    } else if (nameClassifier.equals("NN")) {
        this.classifier = new MultilayerPerceptron();
    } else {/*from  ww w  .j a v  a 2 s  .  c o m*/
        this.classifier = new ZeroR();
    }

    this.nameClassifier = classifier.getClass().getName();
}

From source file:jjj.asap.sas.models1.job.BuildCosineModels.java

License:Open Source License

@Override
protected void run() throws Exception {

    // validate args
    if (!Bucket.isBucket("datasets", inputBucket)) {
        throw new FileNotFoundException(inputBucket);
    }/* www .j  a  va2s.  c o m*/
    if (!Bucket.isBucket("models", outputBucket)) {
        throw new FileNotFoundException(outputBucket);
    }

    // init multi-threading
    Job.startService();
    final Queue<Future<Object>> queue = new LinkedList<Future<Object>>();

    // get the input from the bucket
    List<String> names = Bucket.getBucketItems("datasets", this.inputBucket);
    for (String dsn : names) {

        int essaySet = Contest.getEssaySet(dsn);

        int k = -1;
        switch (essaySet) {

        case 3:
            k = 13;
            break;
        case 5:
        case 7:
            k = 55;
            break;
        case 2:
        case 6:
        case 10:
            k = 21;
            break;
        case 1:
        case 4:
        case 8:
        case 9:
            k = 34;
            break;
        }

        if (k == -1) {
            throw new IllegalArgumentException("not k defined for " + essaySet);
        }

        LinearNNSearch search = new LinearNNSearch();
        search.setDistanceFunction(new CosineDistance());
        search.setSkipIdentical(false);

        IBk knn = new IBk();
        knn.setKNN(k);
        knn.setDistanceWeighting(INVERSE);
        knn.setNearestNeighbourSearchAlgorithm(search);

        queue.add(Job.submit(new ModelBuilder(dsn, "KNN-" + k, knn, this.outputBucket)));
    }

    // wait on complete
    Progress progress = new Progress(queue.size(), this.getClass().getSimpleName());
    while (!queue.isEmpty()) {
        try {
            queue.remove().get();
        } catch (Exception e) {
            Job.log("ERROR", e.toString());
            e.printStackTrace(System.err);
        }
        progress.tick();
    }
    progress.done();
    Job.stopService();

}

From source file:lu.lippmann.cdb.ext.hydviga.gaps.GapFillerFactory.java

License:Open Source License

public static GapFiller getGapFiller(final Algo algo) throws Exception {
    final GapFiller tsgp;
    if (algo == Algo.EM_WITH_DISCR_TIME)
        tsgp = new GapFillerEM(true);
    else if (algo == Algo.EM)
        tsgp = new GapFillerEM(false);
    else if (algo == Algo.Interpolation)
        tsgp = new GapFillerInterpolation(false);
    else if (algo == Algo.ZeroR)
        tsgp = new GapFillerClassifier(false, new ZeroR());
    else if (algo == Algo.REG_WITH_DISCR_TIME)
        tsgp = new GapFillerRegressions(true);
    else if (algo == Algo.REG)
        tsgp = new GapFillerRegressions(false);
    else if (algo == Algo.M5P_WITH_DISCR_TIME)
        tsgp = new GapFillerClassifier(true, new M5P());
    else if (algo == Algo.M5P)
        tsgp = new GapFillerClassifier(false, new M5P());
    else if (algo == Algo.ANN_WITH_DISCR_TIME)
        tsgp = new GapFillerClassifier(true, new MultilayerPerceptron());
    else if (algo == Algo.ANN)
        tsgp = new GapFillerClassifier(false, new MultilayerPerceptron());
    else if (algo == Algo.NEARESTNEIGHBOUR_WITH_DISCR_TIME)
        tsgp = new GapFillerClassifier(true, new IBk());
    else if (algo == Algo.NEARESTNEIGHBOUR)
        tsgp = new GapFillerClassifier(false, new IBk());
    else/* w  w w.j a  va 2  s  .  c  om*/
        throw new Exception("Algo not managed -> " + algo);
    return tsgp;
}

From source file:lu.lippmann.cdb.ext.hydviga.gaps.GapFillerFactory.java

License:Open Source License

public static GapFiller getGapFiller(final String algoname, final boolean useDiscretizedTime) throws Exception {
    final GapFiller tsgp;
    if (algoname.equals("EM"))
        tsgp = new GapFillerEM(useDiscretizedTime);
    else if (algoname.equals("Interpolation"))
        tsgp = new GapFillerInterpolation(useDiscretizedTime);
    else if (algoname.equals("ZeroR"))
        tsgp = new GapFillerClassifier(useDiscretizedTime, new ZeroR());
    else if (algoname.equals("REG"))
        tsgp = new GapFillerRegressions(useDiscretizedTime);
    else if (algoname.equals("M5P"))
        tsgp = new GapFillerClassifier(useDiscretizedTime, new M5P());
    else if (algoname.equals("ANN"))
        tsgp = new GapFillerClassifier(useDiscretizedTime, new MultilayerPerceptron());
    else if (algoname.equals("NEARESTNEIGHBOUR"))
        tsgp = new GapFillerClassifier(useDiscretizedTime, new IBk());
    else//from  w w w . j av  a  2  s . co m
        throw new Exception("Algo name not managed -> " + algoname);
    return tsgp;
}