Example usage for weka.classifiers.functions VotedPerceptron VotedPerceptron

List of usage examples for weka.classifiers.functions VotedPerceptron VotedPerceptron

Introduction

In this page you can find the example usage for weka.classifiers.functions VotedPerceptron VotedPerceptron.

Prototype

VotedPerceptron

Source Link

Usage

From source file:machinelearningcw.MachineLearningCw.java

public static void main(String[] args) throws Exception {

    Instances data[] = getAllFiles();/*from  ww  w.  j  a  va  2 s . co  m*/
    //writes the data to excel
    writer = new FileWriter(
            "\\\\ueahome4\\stusci5\\ypf12pxu\\data\\Documents\\Machine Learning\\adamt94-machinelearning-da75565f2abe\\adamt94-machinelearning-da75565f2abe\\data.csv");
    writer.append("DataName");
    writer.append(",");//next column
    writer.append("Offline");
    writer.append(",");
    writer.append("Online");
    writer.append(",");
    writer.append("Offlinestd");
    writer.append(",");
    writer.append("Onlinestd");
    writer.append(",");
    writer.append("CrossValidation");
    writer.append(",");
    writer.append("Ensemble");
    writer.append(",");
    writer.append("WEKA1");
    writer.append(",");
    writer.append("WEKA2");
    writer.append("\n");//new row
    for (int i = 0; i < data.length; i++) {

        System.out.println("===============" + fileNames.get(i) + "=============");
        writer.append(fileNames.get(i));
        writer.append(",");
        data[i].setClassIndex(data[i].numAttributes() - 1);
        //1. Is one learning algorithm better than the other?
        //   compareAlgorithms(data[i]);

        /*2. Does standardising the data produce a 
         more accurate classifier? 
         You can test this on both learningalgorithms.*/
        //  standardiseData(data[i]);

        /*3. Does choosing the learning algorithm through 
         cross validation produce a more accurate classifier?*/
        //   crossValidation(data[i]);

        // 4. Does using an ensemble produce a more accurate classifier?
        //     ensemble(data[i]);

        /*5. Weka contains several related classifiers in the 
         package weka.classifiers.functions. 
         Comparetwo of your classifiers (including the ensemble) 
         to at least two of the following*/

        /*=======================================
              Weka Classifiers
        =========================================*/

        //            VotedPerceptron mp = new VotedPerceptron();
        // Logistic l = new Logistic();
        //  SimpleLogistic sl = new SimpleLogistic();
        //  MultilayerPerceptron mp = new MultilayerPerceptron();
        //  VotedPerceptron vp = new VotedPerceptron();
        //            
        //            int numFolds = 10;
        //            EvaluationUtils eval = new EvaluationUtils();
        //            ArrayList<Prediction> preds
        //                    = eval.getCVPredictions(mp, data[i], numFolds);
        //            int correct = 0;
        //            int total = 0;
        //            for (Prediction pred : preds) {
        //                if (pred.predicted() == pred.actual()) {
        //                    correct++;
        //                }
        //                total++;
        //            }
        //            double acc = ((double) correct / total);
        //
        //            System.out.println("Logistic Accuracy: " + acc);
        //            writer.append(acc + ",");
        int j = data[i].numClasses();
        writer.append(j + ",");
        writer.append("\n");

    }

    /*=======================================================
     TIMING EXPIREMENT
     =========================================================
     */
    //create all the classifiers
    perceptronClassifier online = new perceptronClassifier();
    EnhancedLinearPerceptron offline = new EnhancedLinearPerceptron();
    EnhancedLinearPerceptron onlinestd = new EnhancedLinearPerceptron();
    onlinestd.setStandardiseAttributes = true;
    EnhancedLinearPerceptron offlinestd = new EnhancedLinearPerceptron();
    offlinestd.setStandardiseAttributes = true;
    EnhancedLinearPerceptron crossvalidate = new EnhancedLinearPerceptron();
    crossvalidate.setStandardiseAttributes = true;
    RandomLinearPerceptron random = new RandomLinearPerceptron();
    Logistic l = new Logistic();
    SimpleLogistic sl = new SimpleLogistic();
    MultilayerPerceptron mp = new MultilayerPerceptron();
    VotedPerceptron vp = new VotedPerceptron();
    //    timingExperiment(online, data);
    //  timingExperiment(offline, data);
    //timingExperiment(onlinestd, data);
    //timingExperiment(offlinestd, data);
    //timingExperiment(crossvalidate, data);
    timingExperiment(random, data);
    //timingExperiment(l, data);
    //timingExperiment(sl, data);
    //  timingExperiment(mp, data);
    // timingExperiment(vp, data);
    writer.flush();
    writer.close();

}

From source file:machinelearningcw.MachineLearningCw.java

public static void wekaClassifiers() {
    Logistic l = new Logistic();
    SimpleLogistic sl = new SimpleLogistic();
    MultilayerPerceptron mp = new MultilayerPerceptron();
    VotedPerceptron vp = new VotedPerceptron();
}