weka.classifiers.functions.VotedPerceptron.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.functions.VotedPerceptron.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    VotedPerceptron.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 <!-- globalinfo-start -->
 * Implementation of the voted perceptron algorithm by Freund and Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.<br/>
 * <br/>
 * For more information, see:<br/>
 * <br/>
 * Y. Freund, R. E. Schapire: Large margin classification using the perceptron algorithm. In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998.
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- technical-bibtex-start -->
 * BibTeX:
 * <pre>
 * &#64;inproceedings{Freund1998,
 *    address = {New York, NY},
 *    author = {Y. Freund and R. E. Schapire},
 *    booktitle = {11th Annual Conference on Computational Learning Theory},
 *    pages = {209-217},
 *    publisher = {ACM Press},
 *    title = {Large margin classification using the perceptron algorithm},
 *    year = {1998}
 * }
 * </pre>
 * <p/>
 <!-- technical-bibtex-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -I &lt;int&gt;
 *  The number of iterations to be performed.
 *  (default 1)</pre>
 * 
 * <pre> -E &lt;double&gt;
 *  The exponent for the polynomial kernel.
 *  (default 1)</pre>
 * 
 * <pre> -S &lt;int&gt;
 *  The seed for the random number generation.
 *  (default 1)</pre>
 * 
 * <pre> -M &lt;int&gt;
 *  The maximum number of alterations allowed.
 *  (default 10000)</pre>
 * 
 <!-- options-end -->
 *
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision$ 
 */
public class VotedPerceptron extends AbstractClassifier implements OptionHandler, TechnicalInformationHandler {

    /** for serialization */
    static final long serialVersionUID = -1072429260104568698L;

    /** The maximum number of alterations to the perceptron */
    private int m_MaxK = 10000;

    /** The number of iterations */
    private int m_NumIterations = 1;

    /** The exponent */
    private double m_Exponent = 1.0;

    /** The actual number of alterations */
    private int m_K = 0;

    /** The training instances added to the perceptron */
    private int[] m_Additions = null;

    /** Addition or subtraction? */
    private boolean[] m_IsAddition = null;

    /** The weights for each perceptron */
    private int[] m_Weights = null;

    /** The training instances */
    private Instances m_Train = null;

    /** Seed used for shuffling the dataset */
    private int m_Seed = 1;

    /** The filter used to make attributes numeric. */
    private NominalToBinary m_NominalToBinary;

    /** The filter used to get rid of missing values. */
    private ReplaceMissingValues m_ReplaceMissingValues;

    /**
     * Returns a string describing this classifier
     * @return a description of the classifier suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {
        return "Implementation of the voted perceptron algorithm by Freund and "
                + "Schapire. Globally replaces all missing values, and transforms "
                + "nominal attributes into binary ones.\n\n" + "For more information, see:\n\n"
                + getTechnicalInformation().toString();
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing 
     * detailed information about the technical background of this class,
     * e.g., paper reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;

        result = new TechnicalInformation(Type.INPROCEEDINGS);
        result.setValue(Field.AUTHOR, "Y. Freund and R. E. Schapire");
        result.setValue(Field.TITLE, "Large margin classification using the perceptron algorithm");
        result.setValue(Field.BOOKTITLE, "11th Annual Conference on Computational Learning Theory");
        result.setValue(Field.YEAR, "1998");
        result.setValue(Field.PAGES, "209-217");
        result.setValue(Field.PUBLISHER, "ACM Press");
        result.setValue(Field.ADDRESS, "New York, NY");

        return result;
    }

    /**
     * Returns an enumeration describing the available options.
     *
     * @return an enumeration of all the available options.
     */
    public Enumeration<Option> listOptions() {

        Vector<Option> newVector = new Vector<Option>(4);

        newVector.addElement(
                new Option("\tThe number of iterations to be performed.\n" + "\t(default 1)", "I", 1, "-I <int>"));
        newVector.addElement(
                new Option("\tThe exponent for the polynomial kernel.\n" + "\t(default 1)", "E", 1, "-E <double>"));
        newVector.addElement(
                new Option("\tThe seed for the random number generation.\n" + "\t(default 1)", "S", 1, "-S <int>"));
        newVector.addElement(new Option("\tThe maximum number of alterations allowed.\n" + "\t(default 10000)", "M",
                1, "-M <int>"));

        newVector.addAll(Collections.list(super.listOptions()));

        return newVector.elements();
    }

    /**
     * Parses a given list of options. <p/>
     *
     <!-- options-start -->
     * Valid options are: <p/>
     * 
     * <pre> -I &lt;int&gt;
     *  The number of iterations to be performed.
     *  (default 1)</pre>
     * 
     * <pre> -E &lt;double&gt;
     *  The exponent for the polynomial kernel.
     *  (default 1)</pre>
     * 
     * <pre> -S &lt;int&gt;
     *  The seed for the random number generation.
     *  (default 1)</pre>
     * 
     * <pre> -M &lt;int&gt;
     *  The maximum number of alterations allowed.
     *  (default 10000)</pre>
     * 
     <!-- options-end -->
     *
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    public void setOptions(String[] options) throws Exception {

        String iterationsString = Utils.getOption('I', options);
        if (iterationsString.length() != 0) {
            m_NumIterations = Integer.parseInt(iterationsString);
        } else {
            m_NumIterations = 1;
        }
        String exponentsString = Utils.getOption('E', options);
        if (exponentsString.length() != 0) {
            m_Exponent = (new Double(exponentsString)).doubleValue();
        } else {
            m_Exponent = 1.0;
        }
        String seedString = Utils.getOption('S', options);
        if (seedString.length() != 0) {
            m_Seed = Integer.parseInt(seedString);
        } else {
            m_Seed = 1;
        }
        String alterationsString = Utils.getOption('M', options);
        if (alterationsString.length() != 0) {
            m_MaxK = Integer.parseInt(alterationsString);
        } else {
            m_MaxK = 10000;
        }

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the classifier.
     *
     * @return an array of strings suitable for passing to setOptions
     */
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        options.add("-I");
        options.add("" + m_NumIterations);
        options.add("-E");
        options.add("" + m_Exponent);
        options.add("-S");
        options.add("" + m_Seed);
        options.add("-M");
        options.add("" + m_MaxK);

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    }

    /**
     * Returns default capabilities of the classifier.
     *
     * @return      the capabilities of this classifier
     */
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.BINARY_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        // instances
        result.setMinimumNumberInstances(0);

        return result;
    }

    /**
     * Builds the ensemble of perceptrons.
     *
     * @param insts the data to train the classifier with
     * @throws Exception if something goes wrong during building
     */
    public void buildClassifier(Instances insts) throws Exception {

        // can classifier handle the data?
        getCapabilities().testWithFail(insts);

        // remove instances with missing class
        insts = new Instances(insts);
        insts.deleteWithMissingClass();

        // Filter data
        m_Train = new Instances(insts);
        m_ReplaceMissingValues = new ReplaceMissingValues();
        m_ReplaceMissingValues.setInputFormat(m_Train);
        m_Train = Filter.useFilter(m_Train, m_ReplaceMissingValues);

        m_NominalToBinary = new NominalToBinary();
        m_NominalToBinary.setInputFormat(m_Train);
        m_Train = Filter.useFilter(m_Train, m_NominalToBinary);

        /** Randomize training data */
        m_Train.randomize(new Random(m_Seed));

        /** Make space to store perceptrons */
        m_Additions = new int[m_MaxK + 1];
        m_IsAddition = new boolean[m_MaxK + 1];
        m_Weights = new int[m_MaxK + 1];

        /** Compute perceptrons */
        m_K = 0;
        out: for (int it = 0; it < m_NumIterations; it++) {
            for (int i = 0; i < m_Train.numInstances(); i++) {
                Instance inst = m_Train.instance(i);
                if (!inst.classIsMissing()) {
                    int prediction = makePrediction(m_K, inst);
                    int classValue = (int) inst.classValue();
                    if (prediction == classValue) {
                        m_Weights[m_K]++;
                    } else {
                        m_IsAddition[m_K] = (classValue == 1);
                        m_Additions[m_K] = i;
                        m_K++;
                        m_Weights[m_K]++;
                    }
                    if (m_K == m_MaxK) {
                        break out;
                    }
                }
            }
        }
    }

    /**
     * Outputs the distribution for the given output.
     *
     * Pipes output of SVM through sigmoid function.
     * @param inst the instance for which distribution is to be computed
     * @return the distribution
     * @throws Exception if something goes wrong
     */
    public double[] distributionForInstance(Instance inst) throws Exception {

        // Filter instance
        m_ReplaceMissingValues.input(inst);
        m_ReplaceMissingValues.batchFinished();
        inst = m_ReplaceMissingValues.output();

        m_NominalToBinary.input(inst);
        m_NominalToBinary.batchFinished();
        inst = m_NominalToBinary.output();

        // Get probabilities
        double output = 0, sumSoFar = 0;
        if (m_K > 0) {
            for (int i = 0; i <= m_K; i++) {
                if (sumSoFar < 0) {
                    output -= m_Weights[i];
                } else {
                    output += m_Weights[i];
                }
                if (m_IsAddition[i]) {
                    sumSoFar += innerProduct(m_Train.instance(m_Additions[i]), inst);
                } else {
                    sumSoFar -= innerProduct(m_Train.instance(m_Additions[i]), inst);
                }
            }
        }
        double[] result = new double[2];
        result[1] = 1 / (1 + Math.exp(-output));
        result[0] = 1 - result[1];

        return result;
    }

    /**
     * Returns textual description of classifier.
     * 
     * @return the model as string
     */
    public String toString() {

        return "VotedPerceptron: Number of perceptrons=" + m_K;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String maxKTipText() {
        return "The maximum number of alterations to the perceptron.";
    }

    /**
     * Get the value of maxK.
     *
     * @return Value of maxK.
     */
    public int getMaxK() {

        return m_MaxK;
    }

    /**
     * Set the value of maxK.
     *
     * @param v  Value to assign to maxK.
     */
    public void setMaxK(int v) {

        m_MaxK = v;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String numIterationsTipText() {
        return "Number of iterations to be performed.";
    }

    /**
     * Get the value of NumIterations.
     *
     * @return Value of NumIterations.
     */
    public int getNumIterations() {

        return m_NumIterations;
    }

    /**
     * Set the value of NumIterations.
     *
     * @param v  Value to assign to NumIterations.
     */
    public void setNumIterations(int v) {

        m_NumIterations = v;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String exponentTipText() {
        return "Exponent for the polynomial kernel.";
    }

    /**
     * Get the value of exponent.
     *
     * @return Value of exponent.
     */
    public double getExponent() {

        return m_Exponent;
    }

    /**
     * Set the value of exponent.
     *
     * @param v  Value to assign to exponent.
     */
    public void setExponent(double v) {

        m_Exponent = v;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String seedTipText() {
        return "Seed for the random number generator.";
    }

    /**
     * Get the value of Seed.
     *
     * @return Value of Seed.
     */
    public int getSeed() {

        return m_Seed;
    }

    /**
     * Set the value of Seed.
     *
     * @param v  Value to assign to Seed.
     */
    public void setSeed(int v) {

        m_Seed = v;
    }

    /** 
     * Computes the inner product of two instances
     * 
     * @param i1 first instance
     * @param i2 second instance
     * @return the inner product
     * @throws Exception if computation fails
     */
    private double innerProduct(Instance i1, Instance i2) throws Exception {

        // we can do a fast dot product
        double result = 0;
        int n1 = i1.numValues();
        int n2 = i2.numValues();
        int classIndex = m_Train.classIndex();
        for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) {
            int ind1 = i1.index(p1);
            int ind2 = i2.index(p2);
            if (ind1 == ind2) {
                if (ind1 != classIndex) {
                    result += i1.valueSparse(p1) * i2.valueSparse(p2);
                }
                p1++;
                p2++;
            } else if (ind1 > ind2) {
                p2++;
            } else {
                p1++;
            }
        }
        result += 1.0;

        if (m_Exponent != 1) {
            return Math.pow(result, m_Exponent);
        } else {
            return result;
        }
    }

    /** 
     * Compute a prediction from a perceptron
     * 
     * @param k
     * @param inst the instance to make a prediction for
     * @return the prediction
     * @throws Exception if computation fails
     */
    private int makePrediction(int k, Instance inst) throws Exception {

        double result = 0;
        for (int i = 0; i < k; i++) {
            if (m_IsAddition[i]) {
                result += innerProduct(m_Train.instance(m_Additions[i]), inst);
            } else {
                result -= innerProduct(m_Train.instance(m_Additions[i]), inst);
            }
        }
        if (result < 0) {
            return 0;
        } else {
            return 1;
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method.
     * 
     * @param argv the commandline options
     */
    public static void main(String[] argv) {
        runClassifier(new VotedPerceptron(), argv);
    }
}