List of usage examples for weka.classifiers.functions MultilayerPerceptron classifyInstance
@Override public double classifyInstance(Instance instance) throws Exception
From source file:Clases.RedNeuronal.RedNeuronal.java
public void redNeuronal(int puntaje, int tiempo, int error) throws Exception { //si puntaje >= 200 entonces aprendido //si tiempo <= 240 (4 minutos) entonces aprendido //si errores <= 3 entonces aprendido String[] dato = { obtnerPuntaje(puntaje), obtenerTiempo(tiempo), obtenerErrores(error) }; ConverterUtils.DataSource con = new ConverterUtils.DataSource( "C:\\Users\\USUARIO\\Documents\\SILVIIS\\10 Modulo\\2.ANTEPROYECTOS DE TESIS\\Proyecto\\Aplicacion\\redeAprendizaje.arff"); // ConverterUtils.DataSource con = new ConverterUtils.DataSource("E:\\Unl\\10 Modulo\\2.ANTEPROYECTOS DE TESIS\\Proyecto\\Aplicacion\\redeAprendizaje.arff"); Instances instances = con.getDataSet(); System.out.println(instances); instances.setClassIndex(instances.numAttributes() - 1); MultilayerPerceptron mp = new MultilayerPerceptron(); mp.buildClassifier(instances);// w w w. j a va 2 s .c o m Evaluation evalucion = new Evaluation(instances); evalucion.evaluateModel(mp, instances); System.out.println(evalucion.toSummaryString()); System.out.println(evalucion.toMatrixString()); String datosEntrada = null; String datosSalida = "no se puede predecir"; for (int i = 0; i < instances.numInstances(); i++) { double predecido = mp.classifyInstance(instances.instance(i)); datosEntrada = dato[0] + " " + dato[1] + " " + dato[2]; if ((int) instances.instance(i).value(0) == Integer.parseInt(dato[0]) && (int) instances.instance(i).value(1) == Integer.parseInt(dato[1]) && (int) instances.instance(i).value(2) == Integer.parseInt(dato[2])) { datosSalida = instances.classAttribute().value((int) predecido); } } System.out.println("DATOS DE ENTRADA: " + datosEntrada); System.out.println("SALIDA PREDECIDA: " + datosSalida); switch (datosSalida) { case "0": resultado = "Excelente ha aprendido"; imgResultado = "Excelente.jpg"; imgREDneuronal = "0.png"; System.out.println("Excelente ha aprendido"); break; case "1": resultado = "Disminuir Errores"; imgResultado = "Bueno.jpg"; imgREDneuronal = "1.png"; System.out.println("Disminuir Errores"); break; case "2": resultado = "Disminuir Tiempo"; imgResultado = "Bueno.jpg"; imgREDneuronal = "2.png"; System.out.println("Disminuir Tiempo"); break; case "3": resultado = "Disminuir Errores y tiempo"; imgResultado = "Bueno.jpg"; imgREDneuronal = "3.png"; System.out.println("Disminuir Errores y tiempo"); break; case "4": resultado = "Subir Puntaje"; imgResultado = "pensando.jpg"; imgREDneuronal = "4.png"; System.out.println("Subir Puntaje"); break; case "5": resultado = "Subir Puntaje y disminuir Errores"; imgResultado = "pensando.jpg"; imgREDneuronal = "5.png"; System.out.println("Subir Puntaje y disminuir Errores"); break; case "6": resultado = "Subir Puntaje y disminuir Tiempo"; imgResultado = "pensando.jpg"; imgREDneuronal = "6.png"; System.out.println("Subir Puntaje y disminuir Tiempo"); break; case "7": resultado = "Ponle mas Empeo"; imgResultado = "pensando.jpg"; imgREDneuronal = "7.png"; System.out.println("Ponle mas Empeo"); break; default: resultado = "Verifique entradas, no se puede predecir"; imgResultado = "Error.jpg"; System.out.println("Verifique entradas, no se puede predecir"); break; } }
From source file:cs.man.ac.uk.predict.Predictor.java
License:Open Source License
public static void makePredictionsEnsembleNew(String trainPath, String testPath, String resultPath) { System.out.println("Training set: " + trainPath); System.out.println("Test set: " + testPath); /**/*ww w . ja v a2 s.co m*/ * The ensemble classifiers. This is a heterogeneous ensemble. */ J48 learner1 = new J48(); SMO learner2 = new SMO(); NaiveBayes learner3 = new NaiveBayes(); MultilayerPerceptron learner5 = new MultilayerPerceptron(); System.out.println("Training Ensemble."); long startTime = System.nanoTime(); try { BufferedReader reader = new BufferedReader(new FileReader(trainPath)); Instances data = new Instances(reader); data.setClassIndex(data.numAttributes() - 1); System.out.println("Training data length: " + data.numInstances()); learner1.buildClassifier(data); learner2.buildClassifier(data); learner3.buildClassifier(data); learner5.buildClassifier(data); long endTime = System.nanoTime(); long nanoseconds = endTime - startTime; double seconds = (double) nanoseconds / 1000000000.0; System.out.println("Training Ensemble completed in " + nanoseconds + " (ns) or " + seconds + " (s)."); } catch (IOException e) { System.out.println("Could not train Ensemble classifier IOException on training data file."); } catch (Exception e) { System.out.println("Could not train Ensemble classifier Exception building model."); } try { String line = ""; // Read the file and display it line by line. BufferedReader in = null; // Read in and store each positive prediction in the tree map. try { //open stream to file in = new BufferedReader(new FileReader(testPath)); while ((line = in.readLine()) != null) { if (line.toLowerCase().contains("@data")) break; } } catch (Exception e) { } // A different ARFF loader used here (compared to above) as // the ARFF file may be extremely large. In which case the whole // file cannot be read in. Instead it is read in incrementally. ArffLoader loader = new ArffLoader(); loader.setFile(new File(testPath)); Instances data = loader.getStructure(); data.setClassIndex(data.numAttributes() - 1); System.out.println("Ensemble Classifier is ready."); System.out.println("Testing on all instances avaialable."); startTime = System.nanoTime(); int instanceNumber = 0; // label instances Instance current; while ((current = loader.getNextInstance(data)) != null) { instanceNumber += 1; line = in.readLine(); double classification1 = learner1.classifyInstance(current); double classification2 = learner2.classifyInstance(current); double classification3 = learner3.classifyInstance(current); double classification5 = learner5.classifyInstance(current); // All classifiers must agree. This is a very primitive ensemble strategy! if (classification1 == 1 && classification2 == 1 && classification3 == 1 && classification5 == 1) { if (line != null) { //System.out.println("Instance: "+instanceNumber+"\t"+line); //System.in.read(); } Writer.append(resultPath, instanceNumber + "\n"); } } in.close(); System.out.println("Test set instances: " + instanceNumber); long endTime = System.nanoTime(); long duration = endTime - startTime; double seconds = (double) duration / 1000000000.0; System.out.println("Testing Ensemble completed in " + duration + " (ns) or " + seconds + " (s)."); } catch (Exception e) { System.out.println("Could not test Ensemble classifier due to an error."); } }
From source file:cs.man.ac.uk.predict.Predictor.java
License:Open Source License
public static void makePredictionsEnsembleStream(String trainPath, String testPath, String resultPath) { System.out.println("Training set: " + trainPath); System.out.println("Test set: " + testPath); /**//from w w w . java 2s. c o m * The ensemble classifiers. This is a heterogeneous ensemble. */ J48 learner1 = new J48(); SMO learner2 = new SMO(); NaiveBayes learner3 = new NaiveBayes(); MultilayerPerceptron learner5 = new MultilayerPerceptron(); System.out.println("Training Ensemble."); long startTime = System.nanoTime(); try { BufferedReader reader = new BufferedReader(new FileReader(trainPath)); Instances data = new Instances(reader); data.setClassIndex(data.numAttributes() - 1); System.out.println("Training data length: " + data.numInstances()); learner1.buildClassifier(data); learner2.buildClassifier(data); learner3.buildClassifier(data); learner5.buildClassifier(data); long endTime = System.nanoTime(); long nanoseconds = endTime - startTime; double seconds = (double) nanoseconds / 1000000000.0; System.out.println("Training Ensemble completed in " + nanoseconds + " (ns) or " + seconds + " (s)."); } catch (IOException e) { System.out.println("Could not train Ensemble classifier IOException on training data file."); } catch (Exception e) { System.out.println("Could not train Ensemble classifier Exception building model."); } try { // A different ARFF loader used here (compared to above) as // the ARFF file may be extremely large. In which case the whole // file cannot be read in. Instead it is read in incrementally. ArffLoader loader = new ArffLoader(); loader.setFile(new File(testPath)); Instances data = loader.getStructure(); data.setClassIndex(data.numAttributes() - 1); System.out.println("Ensemble Classifier is ready."); System.out.println("Testing on all instances avaialable."); startTime = System.nanoTime(); int instanceNumber = 0; // label instances Instance current; while ((current = loader.getNextInstance(data)) != null) { instanceNumber += 1; double classification1 = learner1.classifyInstance(current); double classification2 = learner2.classifyInstance(current); double classification3 = learner3.classifyInstance(current); double classification5 = learner5.classifyInstance(current); // All classifiers must agree. This is a very primitive ensemble strategy! if (classification1 == 1 && classification2 == 1 && classification3 == 1 && classification5 == 1) { Writer.append(resultPath, instanceNumber + "\n"); } } System.out.println("Test set instances: " + instanceNumber); long endTime = System.nanoTime(); long duration = endTime - startTime; double seconds = (double) duration / 1000000000.0; System.out.println("Testing Ensemble completed in " + duration + " (ns) or " + seconds + " (s)."); } catch (Exception e) { System.out.println("Could not test Ensemble classifier due to an error."); } }
From source file:mlp.MLP.java
/** * the trained multilayer perceptron tries to classify the instances in the * test set//from w ww. j a v a2 s . c o m * * @param mlp a trained multilayer perceptron * @param testSet the test set * @throws Exception */ public static void testMLP(MultilayerPerceptron mlp, Instances testSet) throws Exception { for (int i = 0; i < testSet.numInstances(); i++) { double classifier = mlp.classifyInstance(testSet.instance(i)); System.out.print("Number classified as: " + classifier); System.out.println(" / Actual number:" + testSet.instance(i).classValue()); } }