List of usage examples for weka.classifiers Evaluation pctIncorrect
public final double pctIncorrect()
From source file:org.openml.webapplication.fantail.dc.landmarking.J48BasedLandmarker.java
License:Open Source License
public Map<String, Double> characterize(Instances data) { int numFolds = m_NumFolds; double score1 = 0.5; double score2 = 0.5; // double score3 = 0.5; double score3 = 0.5; double score4 = 0.5; // double score3 = 0.5; double score5 = 0.5; double score6 = 0.5; double score7 = 0.5; double score8 = 0.5; double score9 = 0.5; weka.classifiers.trees.J48 cls = new weka.classifiers.trees.J48(); cls.setConfidenceFactor(0.00001f);//from w w w.ja v a2 s . co m try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score1 = eval.pctIncorrect(); score2 = eval.weightedAreaUnderROC(); score7 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.J48(); cls.setConfidenceFactor(0.0001f); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score3 = eval.pctIncorrect(); score4 = eval.weightedAreaUnderROC(); score8 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.J48(); cls.setConfidenceFactor(0.001f); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score5 = eval.pctIncorrect(); score6 = eval.weightedAreaUnderROC(); score9 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } Map<String, Double> qualities = new HashMap<String, Double>(); qualities.put(ids[0], score1); qualities.put(ids[1], score2); qualities.put(ids[2], score3); qualities.put(ids[3], score4); qualities.put(ids[4], score5); qualities.put(ids[5], score6); qualities.put(ids[6], score7); qualities.put(ids[7], score8); qualities.put(ids[8], score9); return qualities; }
From source file:org.openml.webapplication.fantail.dc.landmarking.RandomTreeBasedLandmarker2.java
License:Open Source License
public Map<String, Double> characterize(Instances data) { int seed = m_Seed; Random r = new Random(seed); int numFolds = m_NumFolds; double score1 = 0.5; double score2 = 0.5; // double score3 = 0.5; double score3 = 0.5; double score4 = 0.5; // double score3 = 0.5; double score5 = 0.5; double score6 = 0.5; weka.classifiers.trees.RandomTree cls = new weka.classifiers.trees.RandomTree(); cls.setSeed(r.nextInt());/*w w w . j a v a 2 s . c o m*/ cls.setKValue(m_K); // cls.setMaxDepth(1); try { // ds.buildClassifier(data); weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score1 = eval.pctIncorrect(); score2 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.RandomTree(); cls.setSeed(r.nextInt()); cls.setKValue(m_K); // cls.setMaxDepth(2); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score3 = eval.pctIncorrect(); score4 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.RandomTree(); cls.setSeed(r.nextInt()); cls.setKValue(m_K); // cls.setMaxDepth(3); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score5 = eval.pctIncorrect(); score6 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.RandomTree(); cls.setSeed(r.nextInt()); cls.setKValue(m_K); // cls.setMaxDepth(4); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.RandomTree(); cls.setSeed(r.nextInt()); cls.setKValue(m_K); // cls.setMaxDepth(5); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); } catch (Exception e) { e.printStackTrace(); } Map<String, Double> qualities = new HashMap<String, Double>(); qualities.put(ids[0], score1); qualities.put(ids[1], score2); qualities.put(ids[2], score3); qualities.put(ids[3], score4); qualities.put(ids[4], score5); qualities.put(ids[5], score6); return qualities; }
From source file:org.openml.webapplication.fantail.dc.landmarking.REPTreeBasedLandmarker.java
License:Open Source License
public Map<String, Double> characterize(Instances data) { int numFolds = m_NumFolds; double score1 = 0.5; double score2 = 0.5; // double score3 = 0.5; double score3 = 0.5; double score4 = 0.5; // double score3 = 0.5; double score5 = 0.5; double score6 = 0.5; double score7 = 0.5; double score8 = 0.5; double score9 = 0.5; weka.classifiers.trees.REPTree cls = new weka.classifiers.trees.REPTree(); cls.setMaxDepth(1);//from ww w .j a v a 2s . c o m try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score1 = eval.pctIncorrect(); score2 = eval.weightedAreaUnderROC(); score7 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.REPTree(); cls.setMaxDepth(2); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score3 = eval.pctIncorrect(); score4 = eval.weightedAreaUnderROC(); score8 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } // cls = new weka.classifiers.trees.REPTree(); cls.setMaxDepth(3); try { weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(cls, data, numFolds, new java.util.Random(1)); score5 = eval.pctIncorrect(); score6 = eval.weightedAreaUnderROC(); score9 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } Map<String, Double> qualities = new HashMap<String, Double>(); qualities.put(ids[0], score1); qualities.put(ids[1], score2); qualities.put(ids[2], score3); qualities.put(ids[3], score4); qualities.put(ids[4], score5); qualities.put(ids[5], score6); qualities.put(ids[6], score7); qualities.put(ids[7], score8); qualities.put(ids[8], score9); return qualities; }
From source file:org.openml.webapplication.fantail.dc.landmarking.SimpleLandmarkers.java
License:Open Source License
public Map<String, Double> characterize(Instances data) { int numFolds = m_NumFolds; double score1 = 0.5; double score2 = 0.5; double score5 = 0.5; double score6 = 0.5; double score3 = 0.5; double score4 = 0.5; weka.classifiers.trees.DecisionStump ds = new weka.classifiers.trees.DecisionStump(); try {/*ww w.j a v a2 s .co m*/ weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(ds, data, numFolds, new java.util.Random(1)); score1 = eval.pctIncorrect(); score2 = eval.weightedAreaUnderROC(); score3 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } try { weka.classifiers.bayes.NaiveBayes nb = new weka.classifiers.bayes.NaiveBayes(); weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); eval.crossValidateModel(nb, data, numFolds, new java.util.Random(1)); score5 = eval.pctIncorrect(); score6 = eval.weightedAreaUnderROC(); score4 = eval.kappa(); } catch (Exception e) { e.printStackTrace(); } Map<String, Double> qualities = new HashMap<String, Double>(); qualities.put(ids[0], score1); qualities.put(ids[1], score2); qualities.put(ids[2], score5); qualities.put(ids[3], score6); qualities.put(ids[4], score3); qualities.put(ids[5], score4); return qualities; }