List of usage examples for weka.attributeSelection PrincipalComponents setMaximumAttributeNames
public void setMaximumAttributeNames(int m)
From source file:PCADetector.java
License:Apache License
public boolean runPCA(ArrayList<Double> newData, int slidewdSz, double cAlpha, int nAttrs) { try {//w w w .j a v a2s . c o m if (m_nDims == 0) { m_nDims = nAttrs; for (int i = 0; i < this.m_nDims; i++) { m_oriDataMatrix.add(new ArrayList<Double>()); // one list for each attribute } } verifyData(newData); this.c_alpha = cAlpha; if (false == prepareData(newData, slidewdSz)) return false; Instances oriDataInsts = getInstances(); if (oriDataInsts != null) { // standardization + PCA covariance matrix m_scaledInstances = new Instances(oriDataInsts); Standardize filter = new Standardize(); filter.setInputFormat(m_scaledInstances); m_scaledInstances = Standardize.useFilter(m_scaledInstances, filter); // standardization PrincipalComponents PCA = new PrincipalComponents(); PCA.setVarianceCovered(1.0); // means 100% PCA.setMaximumAttributeNames(-1); PCA.setCenterData(true); Ranker ranker = new Ranker(); AttributeSelection selector = new AttributeSelection(); selector.setSearch(ranker); selector.setEvaluator(PCA); selector.SelectAttributes(m_scaledInstances); // Instances transformedData = selector.reduceDimensionality(m_scaledInstances); // get sorted eigens double[] eigenValues = PCA.getEigenValues(); // eigenVectors[i][j] i: rows; j: cols double[][] eigenVectors = PCA.getUnsortedEigenVectors(); Sort(eigenValues, eigenVectors); setEigens(eigenValues); // get residual start dimension int residualStartDimension = -1; double sum = 0; double major = 0; for (int ss = 0; ss < eigenValues.length; ss++) { sum += eigenValues[ss]; } for (int ss = 0; ss < eigenValues.length; ss++) { major += eigenValues[ss]; if ((residualStartDimension < 0) && (major / sum > 0.95)) { residualStartDimension = ss + 1; break; } } // System.out.println("residualStartDim: "+residualStartDimension); m_threshold = computeThreshold(eigenValues, residualStartDimension); // check new data abnormal or not boolean bAbnormal = checkSPE(eigenVectors, residualStartDimension, newData); computeProjPCs(eigenVectors, residualStartDimension, newData); // only for demo if (bAbnormal) { // anomaly, now to diagnosis // check original space using all the lists diagnosis(eigenVectors, residualStartDimension, newData); } } } catch (Exception exc) { } return true; }
From source file:it.poliba.sisinflab.simlib.featureSelection.methods.PCA.java
public void execute(String dataset) { try {//from w ww . j a va 2s. c o m if (dataset.length() == 0) throw new IllegalArgumentException(); // Load input dataset. DataSource source = new DataSource(dataset); Instances data = source.getDataSet(); // Performs a principal components analysis. PrincipalComponents pcaEvaluator = new PrincipalComponents(); // Sets the amount of variance to account for when retaining principal // components. pcaEvaluator.setVarianceCovered(1.0); // Sets maximum number of attributes to include in transformed attribute // names. pcaEvaluator.setMaximumAttributeNames(-1); // Scaled X such that the variance of each feature is 1. boolean scale = true; if (scale) { pcaEvaluator.setCenterData(true); } else { pcaEvaluator.setCenterData(false); } // Ranking the attributes. Ranker ranker = new Ranker(); ranker.setNumToSelect(-1); AttributeSelection selector = new AttributeSelection(); selector.setSearch(ranker); selector.setEvaluator(pcaEvaluator); selector.SelectAttributes(data); // Transform data into eigenvector basis. Instances transformedData = selector.reduceDimensionality(data); PrintStream o = new PrintStream(new File("data/" + "PCAResults" + ".txt")); System.setOut(o); System.out.println(Arrays.toString(selector.rankedAttributes())); System.out.println(Arrays.toString(selector.selectedAttributes())); //System.out.println(selector.CVResultsString()); System.out.println(selector.toResultsString()); System.out.println(); } catch (IllegalArgumentException e) { System.err.println("Error"); } catch (Exception e) { e.printStackTrace(); } }