List of usage examples for weka.attributeSelection GreedyStepwise GreedyStepwise
public GreedyStepwise()
From source file:task2.java
/** * Processes requests for both HTTP <code>GET</code> and <code>POST</code> * methods.// w w w . j av a2 s .co m * * @param request servlet request * @param response servlet response * @throws ServletException if a servlet-specific error occurs * @throws IOException if an I/O error occurs */ protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); try (PrintWriter out = response.getWriter()) { /* TODO output your page here. You may use following sample code. */ out.println("<!DOCTYPE html>"); out.println("<html>"); out.println("<head>"); out.println("<title>Servlet selection</title>"); out.println("</head>"); out.println("<body>"); CSVLoader loader = new CSVLoader(); loader.setSource(new File("C:/Users//Raguvinoth/Desktop/5339.csv")); Instances data = loader.getDataSet(); //Save ARFF ArffSaver saver = new ArffSaver(); saver.setInstances(data); saver.setFile(new File("\"C:/Users/Raguvinoth/Desktop/5339_converted.arff")); saver.writeBatch(); BufferedReader reader = new BufferedReader( new FileReader("C://Users//Raguvinoth//Desktop//weka1//5339_nominal.arff")); Instances data1 = new Instances(reader); if (data1.classIndex() == -1) data1.setClassIndex(data1.numAttributes() - 14); // 1. meta-classifier // useClassifier(data); // 2. AttributeSelector try { AttributeSelection attsel = new AttributeSelection(); GreedyStepwise search = new GreedyStepwise(); CfsSubsetEval eval = new CfsSubsetEval(); attsel.setEvaluator(eval); attsel.setSearch(search); attsel.SelectAttributes(data); int[] indices = attsel.selectedAttributes(); System.out.println("selected attribute indices:\n" + Utils.arrayToString(indices)); System.out.println("\n 4. Linear-Regression on above selected attributes"); long time1 = System.currentTimeMillis(); long sec1 = time1 / 1000; BufferedReader reader1 = new BufferedReader( new FileReader("C://Users//Raguvinoth//Desktop//weka1//5339_linear2.arff")); Instances data2 = new Instances(reader1); data2.setClassIndex(0); LinearRegression lr = new LinearRegression(); lr.buildClassifier(data2); System.out.println(lr.toString()); long time2 = System.currentTimeMillis(); long sec2 = time2 / 1000; long timeTaken = sec2 - sec1; System.out.println("Total time taken for building the model: " + timeTaken + " seconds"); for (int i = 0; i < 5; i++) { out.println("<p>" + "selected attribute indices:\n" + Utils.arrayToString(indices[i]) + "</p>"); } out.println("<p>" + "\n 4. Linear-Regression on above selected attributes" + "</p>"); out.println("<p>" + lr.toString() + "</p>"); out.println("<p>" + "Total time taken for building the model: " + timeTaken + " seconds" + "</p>"); out.println("</body>"); out.println("</html>"); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
From source file:com.relationalcloud.main.Explanation.java
License:Open Source License
/** * @param args/* w w w.j a v a 2 s. c o m*/ */ public static void main(String[] args) { // LOADING PROPERTY FILE AND DRIVER Properties ini = new Properties(); try { ini.load(new FileInputStream(System.getProperty("prop"))); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } // Register jdbcDriver try { Class.forName(ini.getProperty("driver")); } catch (ClassNotFoundException e) { e.printStackTrace(); } // LOAD PROPERTIES FROM CONFIGURATION FILE String connection = ini.getProperty("conn"); String schemaname = ini.getProperty("schema"); String user = ini.getProperty("user"); String password = ini.getProperty("password"); String txnLogTable = ini.getProperty("txnLogTable"); String numb_trans_to_process = ini.getProperty("Explanation.numTxnsToExtractTemplates"); int numPart = Integer.parseInt(ini.getProperty("numPartitions")); // Initialize the Justification Handler ExplanationHandler jh = new ExplanationHandler(ini); System.out.println("Loading and processing " + jh.schemaname + " traces... considering prop file :" + jh.dbPropertyFile); try { // CREATE A DB CONNEctioN Connection conn = DriverManager.getConnection(connection + schemaname, user, password); Connection infschema_conn = DriverManager.getConnection(connection + "information_schema", user, password); Schema schema = SchemaLoader.loadSchemaFromDB(infschema_conn, schemaname); // ANALYZE WORKLOADS EXTRACTING TABLES, ATTRIBUTES AND FREQUENCIES ExplanationWorkloadPrepocessor wa = ExplanationHandler.analyzeWorkload(txnLogTable, numb_trans_to_process, schemaname, conn, schema); // FOR EACH TABLE CLASSIFY AND POPULATE JUSTIFICATION COLUMN for (String tableProcessed : wa.getAllTableNames()) { System.out.println("-------------------------------------------"); System.out.println("ANALYZING TABLE " + tableProcessed); // FETCH THE INSTANCE FROM THE DB AND SAMPLE IT Instances data = jh.generateInstancesForTable(tableProcessed, wa.getFeatures(tableProcessed), conn); // IF THERE IS ONLY THE PARTITION LABEL, SKIP THE TABLE if (data.numAttributes() < 2) { System.out.println("No transactions touches this table, nothing to be done."); continue; } // INSTANTIATE THE CLASSIFIER String[] options; options = new String[3]; options[0] = "-P"; options[1] = "-C"; options[2] = ini.getProperty("Explanation.j48PruningConfidence"); J48 classifier = new J48(); // new instance of tree classifier.setOptions(options); // set the options Boolean attributeFilter = true; // ATTRIBUTE FILTERING Instances newData; if (data.numClasses() > 1 && attributeFilter) { AttributeSelection filter = new AttributeSelection(); //FIXME TRYING ALTERNATIVE ATTRIBUTE SELECTION STRATEGIES //InfoGainAttributeEval eval = new InfoGainAttributeEval(); //Ranker search = new Ranker(); //search.setNumToSelect(Integer.parseInt(ini.getProperty("Explanation.maxNumberOfAttribute","2"))); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); filter.setEvaluator(eval); filter.setSearch(search); filter.setInputFormat(data); newData = Filter.useFilter(data, filter); } else { newData = data; } String atts = ""; Enumeration e = newData.enumerateAttributes(); ArrayList<String> attributesForPopulation = new ArrayList<String>(); while (e.hasMoreElements()) { String s = ((Attribute) e.nextElement()).name(); attributesForPopulation.add(s); atts += s + ", "; } atts = atts.substring(0, atts.length() - 2); System.out.println("Attribute filtering reduced " + (data.numAttributes() - 1) + " to " + (newData.numAttributes() - 1) + " (" + atts + ")"); data = null; System.gc(); if (newData.numInstances() < 1) { System.err.println("The are no data in the table, skipping classification"); continue; } if (newData.numInstances() > 0) { if (newData.classAttribute().numValues() > 1) { // TRAIN THE CLASSIFIER AND PRINT OUT CLASSIFIER RULES ExplanationHandler.trainClassifier(newData, classifier); if (classifier.measureNumLeaves() == 1) { int partitionvalue = (int) classifier.classifyInstance(newData.firstInstance()); System.out.println( "The classifier decided to put all the tuplesi in the table in one partition: " + partitionvalue); if (Boolean.parseBoolean(ini.getProperty("Explanation.populateExplainedColumn"))) { jh.populateExplainedColumn(tableProcessed, partitionvalue, attributesForPopulation, conn); } } // POPULATING THE justifiedpartition column with the result of this // classifier if required else if (Boolean.parseBoolean(ini.getProperty("Explanation.populateExplainedColumn"))) { jh.populateJustifiedColumn(tableProcessed, classifier, attributesForPopulation, conn, numPart, newData.classAttribute().enumerateValues()); } } else { // easy case... the class attribute is unary!! int partitionvalue = ((int) newData.firstInstance() .value(newData.firstInstance().classIndex())); System.out.println("The table is all stored in one partition, no need to use classifier"); if (Boolean.parseBoolean(ini.getProperty("Explanation.populateExplainedColumn"))) { jh.populateExplainedColumn(tableProcessed, partitionvalue, attributesForPopulation, conn); } } } else throw new Exception("The Instances is empty"); } // SET HASH PARTITION / REPLICATED PARTITION if (Boolean.parseBoolean(ini.getProperty("Explanation.populateHashColumn"))) { jh.populateHashPartition(conn); } if (Boolean.parseBoolean(ini.getProperty("Explanation.populateReplicatedColumn"))) { jh.populateReplicatedPartition(conn, Boolean.parseBoolean(ini.getProperty("Explanation.defaultReplicate"))); } conn.close(); } catch (SQLException e) { e.printStackTrace(); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }
From source file:de.ugoe.cs.cpdp.dataprocessing.TopMetricFilter.java
License:Apache License
private void determineTopKAttributes(Instances testdata, SetUniqueList<Instances> traindataSet) throws Exception { Integer[] counts = new Integer[traindataSet.get(0).numAttributes() - 1]; IntStream.range(0, counts.length).forEach(val -> counts[val] = 0); for (Instances traindata : traindataSet) { J48 decisionTree = new J48(); decisionTree.buildClassifier(traindata); int k = 0; for (int j = 0; j < traindata.numAttributes(); j++) { if (j != traindata.classIndex()) { if (decisionTree.toString().contains(traindata.attribute(j).name())) { counts[k] = counts[k] + 1; }/* w ww .ja v a 2 s . c o m*/ k++; } } } int[] topkIndex = new int[counts.length]; IntStream.range(0, counts.length).forEach(val -> topkIndex[val] = val); SortUtils.quicksort(counts, topkIndex, true); // get CFSs for each training set List<Set<Integer>> cfsSets = new LinkedList<>(); for (Instances traindata : traindataSet) { boolean selectionSuccessful = false; boolean secondAttempt = false; Instances traindataCopy = null; do { try { if (secondAttempt) { AttributeSelection attsel = new AttributeSelection(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); attsel.setEvaluator(eval); attsel.setSearch(search); attsel.SelectAttributes(traindataCopy); Set<Integer> cfsSet = new HashSet<>(); for (int attr : attsel.selectedAttributes()) { cfsSet.add(attr); } cfsSets.add(cfsSet); selectionSuccessful = true; } else { AttributeSelection attsel = new AttributeSelection(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); attsel.setEvaluator(eval); attsel.setSearch(search); attsel.SelectAttributes(traindata); Set<Integer> cfsSet = new HashSet<>(); for (int attr : attsel.selectedAttributes()) { cfsSet.add(attr); } cfsSets.add(cfsSet); selectionSuccessful = true; } } catch (IllegalArgumentException e) { String regex = "A nominal attribute \\((.*)\\) cannot have duplicate labels.*"; Pattern p = Pattern.compile(regex); Matcher m = p.matcher(e.getMessage()); if (!m.find()) { // cannot treat problem, rethrow exception throw e; } String attributeName = m.group(1); int attrIndex = traindata.attribute(attributeName).index(); if (secondAttempt) { traindataCopy = WekaUtils.upscaleAttribute(traindataCopy, attrIndex); } else { traindataCopy = WekaUtils.upscaleAttribute(traindata, attrIndex); } Console.traceln(Level.FINE, "upscaled attribute " + attributeName + "; restarting training"); secondAttempt = true; continue; } } while (!selectionSuccessful); // dummy loop for internal continue } double[] coverages = new double[topkIndex.length]; for (Set<Integer> cfsSet : cfsSets) { Set<Integer> topkSet = new HashSet<>(); for (int k = 0; k < topkIndex.length; k++) { topkSet.add(topkIndex[k]); coverages[k] += (coverage(topkSet, cfsSet) / traindataSet.size()); } } double bestCoverageValue = Double.MIN_VALUE; int bestCoverageIndex = 0; for (int i = 0; i < coverages.length; i++) { if (coverages[i] > bestCoverageValue) { bestCoverageValue = coverages[i]; bestCoverageIndex = i; } } // build correlation matrix SpearmansCorrelation corr = new SpearmansCorrelation(); double[][] correlationMatrix = new double[bestCoverageIndex][bestCoverageIndex]; for (Instances traindata : traindataSet) { double[][] vectors = new double[bestCoverageIndex][traindata.size()]; for (int i = 0; i < traindata.size(); i++) { for (int j = 0; j < bestCoverageIndex; j++) { vectors[j][i] = traindata.get(i).value(topkIndex[j]); } } for (int j = 0; j < bestCoverageIndex; j++) { for (int k = j + 1; k < bestCoverageIndex; k++) { correlationMatrix[j][k] = Math.abs(corr.correlation(vectors[j], vectors[k])); } } } Set<Integer> topkSetIndexSet = new TreeSet<>(); // j<30 ensures that the computational time does not explode since the powerset is 2^n in // complexity for (int j = 0; j < bestCoverageIndex && j < 30; j++) { topkSetIndexSet.add(j); } Set<Set<Integer>> allCombinations = Sets.powerSet(topkSetIndexSet); double bestOptCoverage = Double.MIN_VALUE; Set<Integer> opttopkSetIndexSet = null; for (Set<Integer> combination : allCombinations) { if (isUncorrelated(correlationMatrix, combination)) { double currentCoverage = 0.0; Set<Integer> topkCombination = new TreeSet<>(); for (Integer index : combination) { topkCombination.add(topkIndex[index]); } for (Set<Integer> cfsSet : cfsSets) { currentCoverage += (coverage(topkCombination, cfsSet) / traindataSet.size()); } if (currentCoverage > bestOptCoverage) { bestOptCoverage = currentCoverage; opttopkSetIndexSet = combination; } } } Set<Integer> opttopkIndex = new TreeSet<>(); for (Integer index : opttopkSetIndexSet) { opttopkIndex.add(topkIndex[index]); } Console.traceln(Level.FINE, "selected the following metrics:"); for (Integer index : opttopkIndex) { Console.traceln(Level.FINE, traindataSet.get(0).attribute(index).name()); } // finally remove attributes for (int j = testdata.numAttributes() - 1; j >= 0; j--) { if (j != testdata.classIndex() && !opttopkIndex.contains(j)) { testdata.deleteAttributeAt(j); for (Instances traindata : traindataSet) { traindata.deleteAttributeAt(j); } } } }
From source file:mlpoc.MLPOC.java
/** * uses the meta-classifier//ww w .j av a2s . co m */ protected static void useClassifier(Instances data) throws Exception { System.out.println("\n1. Meta-classfier"); AttributeSelectedClassifier classifier = new AttributeSelectedClassifier(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); J48 base = new J48(); classifier.setClassifier(base); classifier.setEvaluator(eval); classifier.setSearch(search); Evaluation evaluation = new Evaluation(data); evaluation.crossValidateModel(classifier, data, 10, new Random(1)); System.out.println(evaluation.toSummaryString()); }
From source file:mlpoc.MLPOC.java
/** * uses the filter/*from w ww . j a va 2 s . com*/ */ protected static void useFilter(Instances data) throws Exception { System.out.println("\n2. Filter"); weka.filters.supervised.attribute.AttributeSelection filter = new weka.filters.supervised.attribute.AttributeSelection(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); filter.setEvaluator(eval); filter.setSearch(search); filter.setInputFormat(data); Instances newData = Filter.useFilter(data, filter); System.out.println(newData); }
From source file:org.uclab.mm.kcl.ddkat.datapreprocessor.FeaturesSelector.java
License:Apache License
/** * Method to filter the input data using GreedyStepwise approach. * * @throws Exception the exception/* w w w . ja va2 s.c om*/ */ public void filterData() throws Exception { this.confirmationMessage = new ArrayList<String>(); Instances inputData, outputData; String inputFile = BASE_DIR + "OriginalDataSet.csv"; // load CSV file CSVLoader fileLoader = new CSVLoader(); fileLoader.setSource(new File(inputFile)); inputData = fileLoader.getDataSet(); inputData.setClassIndex(inputData.numAttributes() - 1); AttributeSelection filter = new AttributeSelection(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); filter.setEvaluator(eval); filter.setSearch(search); filter.setInputFormat(inputData); outputData = Filter.useFilter(inputData, filter); int indices = outputData.numAttributes(); String selectedAttributesString = ""; for (int i = 0; i < indices; i++) { selectedAttributesString += "\n" + outputData.attribute(i).toString() + ", "; } selectedAttributesString = selectedAttributesString.substring(0, selectedAttributesString.length() - 2); saveFilteredData(inputFile, outputData); }