Example usage for org.opencv.core Mat zeros

List of usage examples for org.opencv.core Mat zeros

Introduction

In this page you can find the example usage for org.opencv.core Mat zeros.

Prototype

public static Mat zeros(int rows, int cols, int type) 

Source Link

Usage

From source file:org.usfirst.frc.team2084.CMonster2016.vision.CameraCalibration.java

License:Open Source License

/**
 * Calibrate the camera. This goes through all the corners in the list and
 * calibrates based off them./*from w  w  w  .ja  v a 2s. com*/
 * 
 * @return the reprojection error
 */
public double calibrate() {
    cameraMatrix = Mat.eye(3, 3, CvType.CV_64F);
    distCoeffs = new MatOfDouble(Mat.zeros(8, 1, CvType.CV_64F));
    List<Mat> rvecs = new LinkedList<>();
    List<Mat> tvecs = new LinkedList<>();

    // Set the fixed aspect ratio
    cameraMatrix.put(0, 0, aspectRatio);

    List<Mat> objectPoints = Collections.nCopies(calibrationCorners.size(), calcBoardCornerPositions());

    System.out.println(cameraMatrix);
    return error = Calib3d.calibrateCamera(objectPoints, calibrationCorners, HighGoalProcessor.IMAGE_SIZE,
            cameraMatrix, distCoeffs, rvecs, tvecs, Calib3d.CALIB_FIX_PRINCIPAL_POINT);
}

From source file:samples.LWF.java

private static void affine(Mat mat, double[][] from, double[][] to, double[][] coeficients, Mat lienzo,
        double escala, double gap) {
    // throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates.

    //   http://stackoverflow.com/questions/10100715/opencv-warping-from-one-triangle-to-another
    //  https://www.learnopencv.com/warp-one-triangle-to-another-using-opencv-c-python/
    //   http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html
    MatOfPoint2f src_pf = new MatOfPoint2f(new Point(from[0][0], from[0][1]), new Point(from[1][0], from[1][1]),
            new Point(from[2][0], from[2][1]));
    MatOfPoint2f dst_pf = new MatOfPoint2f(new Point(to[0][0], to[0][1]), new Point(to[1][0], to[1][1]),
            new Point(to[2][0], to[2][1]));

    //  https://www.learnopencv.com/warp-one-triangle-to-another-using-opencv-c-python/#download
    //how do I set up the position numbers in MatOfPoint2f here?
    //  Mat perspective_matrix = Imgproc.getAffineTransform(src_pf, dst_pf);
    Rect r1 = Imgproc.boundingRect(new MatOfPoint(new Point(from[0][0], from[0][1]),
            new Point(from[1][0], from[1][1]), new Point(from[2][0], from[2][1])));
    Rect r2 = Imgproc.boundingRect(new MatOfPoint(new Point(to[0][0], to[0][1]), new Point(to[1][0], to[1][1]),
            new Point(to[2][0], to[2][1])));

    MatOfPoint2f tri1Cropped = new MatOfPoint2f(new Point(from[0][0] - r1.x, from[0][1] - r1.y),
            new Point(from[1][0] - r1.x, from[1][1] - r1.y), new Point(from[2][0] - r1.x, from[2][1] - r1.y));

    MatOfPoint tri2CroppedInt = new MatOfPoint(new Point(to[0][0] - r2.x, to[0][1] - r2.y),
            new Point(to[1][0] - r2.x, to[1][1] - r2.y), new Point(to[2][0] - r2.x, to[2][1] - r2.y));

    MatOfPoint2f tri2Cropped = new MatOfPoint2f(new Point((to[0][0] - r2.x), (to[0][1] - r2.y)),
            new Point((to[1][0] - r2.x), (to[1][1] - r2.y)), new Point((to[2][0] - r2.x), (to[2][1] - r2.y)));
    //        for (int i = 0; i < 3; i++) {
    //           // tri1Cropped.push_back(new MatOfPoint(new Point(from[i][0] - r1.x, from[i][1] - r1.y))); //           new Point( from[i][0]  - r1.x, from[i][1]-  r1.y) );
    //            //tri2Cropped.push_back(new MatOfPoint(new Point(to[i][0] - r2.x, to[i][1] - r2.y)));
    ////from w w w  . ja  va  2  s .  co  m
    //            // fillConvexPoly needs a vector of Point and not Point2f
    //           // tri2CroppedInt.push_back(new MatOfPoint2f(new Point((int) (to[i][0] - r2.x), (int) (to[i][1] - r2.y))));
    //
    //        }

    // Apply warpImage to small rectangular patches
    Mat img1Cropped = mat.submat(r1);
    //img1(r1).copyTo(img1Cropped);

    // Given a pair of triangles, find the affine transform.
    Mat warpMat = Imgproc.getAffineTransform(tri1Cropped, tri2Cropped);

    //       Mat bbb = warpMat.mul(tri1Cropped);
    //        
    //       System.out.println( warpMat.dump() );
    //       System.out.println( tri2Cropped.dump() );
    //       System.out.println( bbb.dump() );
    // Apply the Affine Transform just found to the src image
    Mat img2Cropped = Mat.zeros(r2.height, r2.width, img1Cropped.type());
    Imgproc.warpAffine(img1Cropped, img2Cropped, warpMat, img2Cropped.size(), 0, Imgproc.INTER_LINEAR,
            new Scalar(Core.BORDER_TRANSPARENT)); //, 0, Imgproc.INTER_LINEAR, new Scalar(Core.BORDER_REFLECT_101));

    // Get mask by filling triangle
    Mat mask = Mat.zeros(r2.height, r2.width, CvType.CV_8UC3); ///CV_8U    CV_32FC3
    Imgproc.fillConvexPoly(mask, tri2CroppedInt, new Scalar(1.0, 1.0, 1.0), 16, 0);

    // Copy triangular region of the rectangular patch to the output image
    //         Core.multiply(img2Cropped,mask, img2Cropped);
    //         
    //         Core.multiply(mask, new Scalar(-1), mask);
    //        Core.(mask,new Scalar(gap), mask);
    //Core.multiply(lienzo.submat(r2),  (new Scalar(1.0,1.0,1.0)). - Core.multiply(mask,), lienzo.submat(r2));
    //         img2(r2) = img2(r2) + img2Cropped;
    // Core.subtract(Mat.ones(mask.height(), mask.width(), CvType.CV_8UC3), mask, mask);
    // Mat ff =   ;
    //   este
    Core.multiply(img2Cropped, mask, img2Cropped);
    //Core.multiply(lienzo.submat(r2), mask  , lienzo.submat(r2));         
    Core.add(lienzo.submat(r2), img2Cropped, lienzo.submat(r2));

    /*
     Mat bb = new Mat(mat, r2);
     bb.setTo(new Scalar(rnd.nextInt(),rnd.nextInt(),rnd.nextInt()));         
     Core.multiply(bb,mask, bb);
     Core.multiply(lienzo.submat(r2), mask  , lienzo.submat(r2));         
     Core.add(lienzo.submat(r2), bb, lienzo.submat(r2));
             
     */
    // lienzo.submat(r2).setTo(new Scalar(rnd.nextInt(),rnd.nextInt(),rnd.nextInt()));
    //         
    //      Imgproc.fillConvexPoly(lienzo, new MatOfPoint(
    //                new Point(to[0][0] , to[0][1]),
    //                new Point(to[1][0] , to[1][1]),
    //                new Point(to[2][0] , to[2][1] )), new Scalar(1,1,1));
    //        img2Cropped.copyTo(lienzo);
    //        return;
    // http://stackoverflow.com/questions/14111716/how-to-set-a-mask-image-for-grabcut-in-opencv  
    //  Imgproc.warpAffine(mat, lienzo, perspective_matrix, lienzo.size());
    // Imgproc.getAffineTransform(null, null);
    /*     
     // Find bounding rectangle for each triangle
     Rect r1 = boundingRect(tri1);
     Rect r2 = boundingRect(tri2);
            
     // Offset points by left top corner of the respective rectangles
     vector<Point2f> tri1Cropped, tri2Cropped;
     vector<Point> tri2CroppedInt;
     for(int i = 0; i < 3; i++)
     {
     tri1Cropped.push_back( Point2f( tri1[i].x - r1.x, tri1[i].y -  r1.y) );
     tri2Cropped.push_back( Point2f( tri2[i].x - r2.x, tri2[i].y - r2.y) );
            
     // fillConvexPoly needs a vector of Point and not Point2f
     tri2CroppedInt.push_back( Point((int)(tri2[i].x - r2.x), (int)(tri2[i].y - r2.y)) );
            
     }
            
     // Apply warpImage to small rectangular patches
     Mat img1Cropped;
     img1(r1).copyTo(img1Cropped);
            
     // Given a pair of triangles, find the affine transform.
     Mat warpMat = getAffineTransform( tri1Cropped, tri2Cropped );
            
     // Apply the Affine Transform just found to the src image
     Mat img2Cropped = Mat::zeros(r2.height, r2.width, img1Cropped.type());
     warpAffine( img1Cropped, img2Cropped, warpMat, img2Cropped.size(), INTER_LINEAR, BORDER_REFLECT_101);
            
     // Get mask by filling triangle
     Mat mask = Mat::zeros(r2.height, r2.width, CV_32FC3);
     fillConvexPoly(mask, tri2CroppedInt, Scalar(1.0, 1.0, 1.0), 16, 0);
            
     // Copy triangular region of the rectangular patch to the output image
     multiply(img2Cropped,mask, img2Cropped);
     multiply(img2(r2), Scalar(1.0,1.0,1.0) - mask, img2(r2));
     img2(r2) = img2(r2) + img2Cropped;*/
}

From source file:se.hb.jcp.bindings.opencv.DenseDoubleMatrix1D.java

License:Open Source License

/**
 * Constructs a matrix with a given number of columns.
 * All entries are initially <tt>0</tt>.
 * @param columns the number of columns the matrix shall have.
 * @throws IllegalArgumentException if/*from  w  ww  .  java  2  s  . c  o m*/
       <tt>columns<0 || columns > Integer.MAX_VALUE</tt>.
*/
public DenseDoubleMatrix1D(int columns) {
    _mat = new MatOfFloat();
    Mat.zeros(1, columns, CvType.CV_32F).assignTo(_mat);
    setUp(columns);
}

From source file:se.hb.jcp.bindings.opencv.DenseDoubleMatrix2D.java

License:Open Source License

/**
 * Constructs a matrix with a given number of rows and columns.
 * All entries are initially <tt>0</tt>.
 * @param rows the number of rows the matrix shall have.
 * @param columns the number of columns the matrix shall have.
 * @throws IllegalArgumentException if/*from w w  w . j a  v a2  s . c o m*/
       <tt>rows<0 || columns<0 || (double)columns*rows >
       Integer.MAX_VALUE</tt>.
*/
public DenseDoubleMatrix2D(int rows, int columns) {
    _mat = new MatOfFloat();
    Mat.zeros(rows, columns, CvType.CV_32F).assignTo(_mat);
    setUp(rows, columns);
}

From source file:servlets.FillAreaByScribble.java

/**
 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods./*ww w.j a va 2s.c o  m*/
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    response.setContentType("text/html;charset=UTF-8");
    try (PrintWriter out = response.getWriter()) {

        String imageForTextRecognition = request.getParameter("imageForTextRecognition") + ".png";
        String isSingleRegion = request.getParameter("isSingleRegion");
        boolean makeSingleRegion = isSingleRegion.toLowerCase().equals("true");

        Mat original = ImageUtils.loadImage(imageForTextRecognition, request);
        Mat image = original.clone();
        Mat mask = Mat.zeros(image.rows() + 2, image.cols() + 2, CvType.CV_8UC1);

        String samplingPoints = request.getParameter("samplingPoints");

        Gson gson = new Gson();
        Point[] tmpPoints = gson.fromJson(samplingPoints, Point[].class);

        ArrayList<Point> userPoints = new ArrayList<Point>(Arrays.asList(tmpPoints));

        Mat userPointsImage = image.clone();

        ArrayList<Mat> maskRegions = new ArrayList<>();

        Random random = new Random();
        int b = random.nextInt(256);
        int g = random.nextInt(256);
        int r = random.nextInt(256);
        Scalar newVal = new Scalar(b, g, r);
        FloodFillFacade floodFillFacade = new FloodFillFacade();

        int k = 0;

        for (int i = 0; i < userPoints.size(); i++) {
            Point point = userPoints.get(i);

            image = floodFillFacade.fill(image, mask, (int) point.x, (int) point.y, newVal);

            Mat seedImage = original.clone();
            Core.circle(seedImage, point, 9, new Scalar(0, 0, 255), -1);
            Core.putText(userPointsImage, "" + k, new Point(point.x + 5, point.y + 5), 3, 0.5,
                    new Scalar(0, 0, 0));
            //                ImageUtils.saveImage(seedImage, "mask_" + k + "_seed" + imageForTextRecognition + ".png", request);

            if (!makeSingleRegion) {
                Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
                Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);
                Imgproc.resize(mask, mask, original.size());
            }

            //                ImageUtils.saveImage(mask, "mask_" + k + "" + imageForTextRecognition + ".png", request);

            Mat dilatedMask = new Mat();

            int elementSide = 21;
            Mat element = new Mat(elementSide, elementSide, CvType.CV_8U, new Scalar(1));
            Imgproc.morphologyEx(mask, dilatedMask, Imgproc.MORPH_DILATE, element, new Point(-1, -1), 1);
            Imgproc.resize(dilatedMask, dilatedMask, original.size());

            //                ImageUtils.saveImage(dilatedMask, "mask_" + k + "_dilated" + imageForTextRecognition + ".png", request);

            maskRegions.add(mask);

            if (!makeSingleRegion) {
                int totalRemovedPoints = filterPoints(userPoints, dilatedMask);
                if (totalRemovedPoints > 0) {
                    i = -1; // so that the algorithm starts again at the first element of the userPoints array
                }
            } else {
                filterPoints(userPoints, mask);
            }

            //                System.out.println("Total points after filtering:");
            //                System.out.println(userPoints.size());

            if (!makeSingleRegion) {
                mask = Mat.zeros(original.rows() + 2, original.cols() + 2, CvType.CV_8UC1);
            }

            k++;
        }

        ArrayList<FindingResponse> findingResponses = new ArrayList<>();

        if (makeSingleRegion) {

            Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
            Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);

            Imgproc.resize(mask, mask, image.size());

            List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
            Imgproc.findContours(mask.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                    Imgproc.CHAIN_APPROX_NONE);

            MatOfPoint biggestContour = contours.get(0); // getting the biggest contour
            double contourArea = Imgproc.contourArea(biggestContour);

            if (contours.size() > 1) {
                biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
            }

            Point[] biggestContourPoints = biggestContour.toArray();
            String path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y + " ";
            for (int i = 1; i < biggestContourPoints.length; ++i) {
                Point v = biggestContourPoints[i];
                path += "L " + (int) v.x + " " + (int) v.y + " ";
            }
            path += "Z";

            //                System.out.println("path:");
            //                System.out.println(path);

            Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
            Point massCenter = computedSearchWindow.tl();

            Scalar meanColor = Core.mean(original, mask);

            //                ImageUtils.saveImage(mask, "single_mask_" + imageForTextRecognition + ".png", request);

            FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1, contourArea);
            findingResponses.add(findingResponse);

        } else {

            float imageArea = image.cols() * image.rows();

            for (int j = 0; j < maskRegions.size(); j++) {
                Mat region = maskRegions.get(j);

                List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
                Imgproc.findContours(region.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                        Imgproc.CHAIN_APPROX_NONE);

                MatOfPoint biggestContour = contours.get(0); // getting the biggest contour

                if (contours.size() > 1) {
                    biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
                }

                double contourArea = Imgproc.contourArea(biggestContour);

                if (contourArea / imageArea < 0.8) { // only areas less than 80% of that of the image are accepted

                    Point[] biggestContourPoints = biggestContour.toArray();
                    String path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y
                            + " ";
                    for (int i = 1; i < biggestContourPoints.length; ++i) {
                        Point v = biggestContourPoints[i];
                        path += "L " + (int) v.x + " " + (int) v.y + " ";
                    }
                    path += "Z";

                    Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
                    Point massCenter = computedSearchWindow.tl();

                    //                        System.out.println("Contour area: " + contourArea);

                    Mat contoursImage = userPointsImage.clone();
                    Imgproc.drawContours(contoursImage, contours, 0, newVal, 1);

                    Scalar meanColor = Core.mean(original, region);

                    FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1,
                            contourArea);
                    findingResponses.add(findingResponse);

                    //                        ImageUtils.saveImage(contoursImage, "mask_" + j + "_contourned" + imageForTextRecognition + ".png", request);

                }

            }

        }

        String jsonResponse = gson.toJson(findingResponses, ArrayList.class);

        out.println(jsonResponse);

    }
}

From source file:servlets.processScribble.java

/**
 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods./*  w w w.ja v  a2 s. co  m*/
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    response.setContentType("text/html;charset=UTF-8");
    try (PrintWriter out = response.getWriter()) {

        String imageForTextRecognition = request.getParameter("imageForTextRecognition") + ".png";

        Mat original = ImageUtils.loadImage(imageForTextRecognition, request);
        Mat image = original.clone();
        Mat mask = Mat.zeros(image.rows() + 2, image.cols() + 2, CvType.CV_8UC1);

        String samplingPoints = request.getParameter("samplingPoints");

        Gson gson = new Gson();
        Point[] userPoints = gson.fromJson(samplingPoints, Point[].class);

        MatOfPoint points = new MatOfPoint(new Mat(userPoints.length, 1, CvType.CV_32SC2));
        int cont = 0;

        for (Point point : userPoints) {
            int y = (int) point.y;
            int x = (int) point.x;
            int[] data = { x, y };
            points.put(cont++, 0, data);
        }

        MatOfInt hull = new MatOfInt();
        Imgproc.convexHull(points, hull);

        MatOfPoint mopOut = new MatOfPoint();
        mopOut.create((int) hull.size().height, 1, CvType.CV_32SC2);

        int totalPoints = (int) hull.size().height;

        Point[] convexHullPoints = new Point[totalPoints];
        ArrayList<Point> seeds = new ArrayList<>();

        for (int i = 0; i < totalPoints; i++) {
            int index = (int) hull.get(i, 0)[0];
            double[] point = new double[] { points.get(index, 0)[0], points.get(index, 0)[1] };
            mopOut.put(i, 0, point);

            convexHullPoints[i] = new Point(point[0], point[1]);
            seeds.add(new Point(point[0], point[1]));

        }

        MatOfPoint mop = new MatOfPoint();
        mop.fromArray(convexHullPoints);

        ArrayList<MatOfPoint> arrayList = new ArrayList<MatOfPoint>();
        arrayList.add(mop);

        Random random = new Random();
        int b = random.nextInt(256);
        int g = random.nextInt(256);
        int r = random.nextInt(256);
        Scalar newVal = new Scalar(b, g, r);

        FloodFillFacade floodFillFacade = new FloodFillFacade();

        for (int i = 0; i < seeds.size(); i++) {
            Point seed = seeds.get(i);
            image = floodFillFacade.fill(image, mask, (int) seed.x, (int) seed.y, newVal);
        }

        Imgproc.drawContours(image, arrayList, 0, newVal, -1);

        Imgproc.resize(mask, mask, image.size());

        Scalar meanColor = Core.mean(original, mask);

        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\the_convexHull.png", image);
        ImageUtils.saveImage(image, imageForTextRecognition + "_the_convexHull.png", request);

        newVal = new Scalar(255, 255, 0);

        floodFillFacade.setMasked(false);
        System.out.println("Last one:");
        floodFillFacade.fill(image, mask, 211, 194, newVal);

        Core.circle(image, new Point(211, 194), 5, new Scalar(0, 0, 0), -1);
        ImageUtils.saveImage(image, imageForTextRecognition + "_final.png", request);
        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\final.png", image);

        Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
        Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);

        Imgproc.resize(mask, mask, image.size());

        //            ImageUtils.saveImage(mask, "final_mask_dilated.png", request);
        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\final_mask_dilated.png", mask);

        List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
        Imgproc.findContours(mask.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                Imgproc.CHAIN_APPROX_NONE);
        double contourArea = 0;
        String path = "";

        MatOfPoint biggestContour = contours.get(0); // getting the biggest contour
        contourArea = Imgproc.contourArea(biggestContour);

        if (contours.size() > 1) {
            biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
        }

        Point[] biggestContourPoints = biggestContour.toArray();
        path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y + " ";
        for (int i = 1; i < biggestContourPoints.length; ++i) {
            Point v = biggestContourPoints[i];
            path += "L " + (int) v.x + " " + (int) v.y + " ";
        }
        path += "Z";

        System.out.println("path:");
        System.out.println(path);

        Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
        Point massCenter = computedSearchWindow.tl();

        FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1, contourArea);
        String jsonResponse = gson.toJson(findingResponse, FindingResponse.class);

        out.println(jsonResponse);

        //            String jsonResponse = gson.toJson(path);
        //            out.println(jsonResponse);
    }
}