Example usage for org.opencv.core Mat Mat

List of usage examples for org.opencv.core Mat Mat

Introduction

In this page you can find the example usage for org.opencv.core Mat Mat.

Prototype

public Mat(Mat m, Range rowRange, Range colRange) 

Source Link

Usage

From source file:com.seleniumtests.util.imaging.ImageDetector.java

License:Apache License

private MinMaxLocResult getBestTemplateMatching(int matchMethod, Mat sceneImageMat, Mat objectImageMat) {

    // / Create the result matrix
    int resultCols = sceneImageMat.cols() - objectImageMat.cols() + 1;
    int resultRows = sceneImageMat.rows() - objectImageMat.rows() + 1;
    Mat result = new Mat(resultRows, resultCols, CvType.CV_32FC1);

    // / Do the Matching and Normalize
    Imgproc.matchTemplate(sceneImageMat, objectImageMat, result, matchMethod);

    // / Localizing the best match with minMaxLoc        
    return Core.minMaxLoc(result);
}

From source file:com.shootoff.camera.autocalibration.AutoCalibrationManager.java

License:Open Source License

private Optional<Long> checkForFrameChange(BufferedImage frame) {
    Mat mat;/*from  www . java2 s. c  om*/

    synchronized (frame) {
        undistortFrame(frame);
        mat = Camera.bufferedImageToMat(frame);
    }

    final double[] pixel = getFrameDelayPixel(mat);

    // Initialize
    if (patternLuminosity[0] == -1) {
        patternLuminosity = pixel;
        return Optional.empty();
    }

    final Mat tempMat = new Mat(1, 2, CvType.CV_8UC3);
    tempMat.put(0, 0, patternLuminosity);
    tempMat.put(0, 1, pixel);

    Imgproc.cvtColor(tempMat, tempMat, Imgproc.COLOR_BGR2HSV);

    if (tempMat.get(0, 1)[2] < .9 * tempMat.get(0, 0)[2]) {
        return Optional.of(cameraManager.getCurrentFrameTimestamp() - frameTimestampBeforeFrameChange);
    }

    return Optional.empty();
}

From source file:com.shootoff.camera.Camera.java

License:Open Source License

public static Mat bufferedImageToMat(BufferedImage frame) {
    BufferedImage transformedFrame = ConverterFactory.convertToType(frame, BufferedImage.TYPE_3BYTE_BGR);
    byte[] pixels = ((DataBufferByte) transformedFrame.getRaster().getDataBuffer()).getData();
    Mat mat = new Mat(frame.getHeight(), frame.getWidth(), CvType.CV_8UC3);
    mat.put(0, 0, pixels);//from   ww  w  .  j  a v a 2s.  co m

    return mat;
}

From source file:com.sikulix.core.Visual.java

License:Open Source License

protected static Mat makeMat(BufferedImage bImg) {
    Mat aMat = null;/*from  w w  w.  j  a v  a2  s .  c  om*/
    if (bImg.getType() == BufferedImage.TYPE_INT_RGB) {
        vLog.trace("makeMat: INT_RGB (%dx%d)", bImg.getWidth(), bImg.getHeight());
        int[] data = ((DataBufferInt) bImg.getRaster().getDataBuffer()).getData();
        ByteBuffer byteBuffer = ByteBuffer.allocate(data.length * 4);
        IntBuffer intBuffer = byteBuffer.asIntBuffer();
        intBuffer.put(data);
        aMat = new Mat(bImg.getHeight(), bImg.getWidth(), CvType.CV_8UC4);
        aMat.put(0, 0, byteBuffer.array());
        Mat oMatBGR = new Mat(bImg.getHeight(), bImg.getWidth(), CvType.CV_8UC3);
        Mat oMatA = new Mat(bImg.getHeight(), bImg.getWidth(), CvType.CV_8UC1);
        List<Mat> mixIn = new ArrayList<Mat>(Arrays.asList(new Mat[] { aMat }));
        List<Mat> mixOut = new ArrayList<Mat>(Arrays.asList(new Mat[] { oMatA, oMatBGR }));
        //A 0 - R 1 - G 2 - B 3 -> A 0 - B 1 - G 2 - R 3
        Core.mixChannels(mixIn, mixOut, new MatOfInt(0, 0, 1, 3, 2, 2, 3, 1));
        return oMatBGR;
    } else if (bImg.getType() == BufferedImage.TYPE_3BYTE_BGR) {
        vLog.error("makeMat: 3BYTE_BGR (%dx%d)", bImg.getWidth(), bImg.getHeight());
    } else {
        vLog.error("makeMat: Type not supported: %d (%dx%d)", bImg.getType(), bImg.getWidth(),
                bImg.getHeight());
    }
    return aMat;
}

From source file:com.team.formal.eyeshopping.ActivityFindingResults.java

License:Open Source License

private void callCloudVision(final Bitmap bitmap) throws IOException {
    // Do the real work in an async task, because we need to use the network anyway
    new AsyncTask<Object, Void, ArrayList<String>>() {
        final ProgressDialog asyncDialog = new ProgressDialog(ActivityFindingResults.this);

        @Override//from w w  w. jav a  2s  .  co m
        protected void onPreExecute() {
            super.onPreExecute();
            asyncDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);
            asyncDialog.setMessage("Loading Products ...");
            asyncDialog.show();
        }

        @Override
        protected ArrayList<String> doInBackground(Object... params) {
            try {
                HttpTransport httpTransport = AndroidHttp.newCompatibleTransport();
                JsonFactory jsonFactory = GsonFactory.getDefaultInstance();

                VisionRequestInitializer requestInitializer = new VisionRequestInitializer(
                        CLOUD_VISION_API_KEY) {
                    /**
                     * We override this so we can inject important identifying fields into the HTTP
                     * headers. This enables use of a restricted cloud platform API key.
                     */
                    @Override
                    protected void initializeVisionRequest(VisionRequest<?> visionRequest) throws IOException {
                        super.initializeVisionRequest(visionRequest);

                        String packageName = getPackageName();
                        visionRequest.getRequestHeaders().set(ANDROID_PACKAGE_HEADER, packageName);

                        String sig = PackageManagerUtils.getSignature(getPackageManager(), packageName);

                        visionRequest.getRequestHeaders().set(ANDROID_CERT_HEADER, sig);
                    }
                };

                Vision.Builder builder = new Vision.Builder(httpTransport, jsonFactory, null);
                builder.setVisionRequestInitializer(requestInitializer);

                Vision vision = builder.build();

                BatchAnnotateImagesRequest batchAnnotateImagesRequest = new BatchAnnotateImagesRequest();
                batchAnnotateImagesRequest.setRequests(new ArrayList<AnnotateImageRequest>() {
                    {
                        AnnotateImageRequest annotateImageRequest = new AnnotateImageRequest();

                        // Add the image
                        Image base64EncodedImage = new Image();
                        // Convert the bitmap to a JPEG
                        // Just in case it's a format that Android understands but Cloud Vision
                        ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
                        bitmap.compress(Bitmap.CompressFormat.JPEG, 90, byteArrayOutputStream);
                        byte[] imageBytes = byteArrayOutputStream.toByteArray();

                        // Base64 encode the JPEG
                        base64EncodedImage.encodeContent(imageBytes);
                        annotateImageRequest.setImage(base64EncodedImage);
                        // add the features we want
                        annotateImageRequest.setFeatures(new ArrayList<Feature>() {
                            {
                                Feature webDetection = new Feature();
                                webDetection.setType("WEB_DETECTION");
                                webDetection.setMaxResults(20);
                                add(webDetection);
                            }
                        });

                        // Add the list of one thing to the request
                        add(annotateImageRequest);
                    }
                });

                Vision.Images.Annotate annotateRequest = vision.images().annotate(batchAnnotateImagesRequest);
                // Due to a bug: requests to Vision API containing large images fail when GZipped.
                annotateRequest.setDisableGZipContent(true);
                Log.d(TAG, "created Cloud Vision request object, sending request");

                BatchAnnotateImagesResponse response = annotateRequest.execute();

                return convertResponseToString(response);
            } catch (GoogleJsonResponseException e) {
                Log.d(TAG, "failed to make API request because " + e.getContent());
            } catch (IOException e) {
                Log.d(TAG, "failed to make API request because of other IOException " + e.getMessage());
            }
            return null;
        }

        @Override
        protected void onPostExecute(ArrayList<String> urls) {
            super.onPostExecute(urls);
            //   urls .

            for (int i = 0; i < urls.size(); i++) {
                Log.d("pages", urls.get(i));
            }
            ArrayList<String[]> parsedUrl = urlParsing(urls);
            Map<String, Integer> map = new HashMap<String, Integer>();

            // 1. url  /   _-
            for (int i = 0; i < parsedUrl.size(); i++) {
                for (int j = 0; j < parsedUrl.get(i).length; j++) {
                    System.out.println(parsedUrl.get(i)[j]);
                    Integer count = map.get(parsedUrl.get(i)[j]);
                    map.put(parsedUrl.get(i)[j], (count == null) ? 1 : count + 1);
                }
                System.out.println("");
            }

            //   ,   keyword    
            //  .
            //   naver Shop api 
            ArrayList<String> rankCount = new ArrayList<>();
            ArrayList<ArrayList<String>> resultArr = new ArrayList<ArrayList<String>>();

            for (Map.Entry<String, Integer> entry : map.entrySet()) {
                if (entry.getValue() >= 4) {
                    System.out.println("keyword : " + entry.getKey() + " Count : " + entry.getValue());
                    rankCount.add(entry.getKey());
                }
            }

            final ArrayList<String> coreKeywords = new ArrayList<>();

            if (!rankCount.isEmpty()) {
                for (int k = 0; k < 7; k++) {
                    int randomCount = randomRange(1, rankCount.size());
                    boolean checkDuplicate[] = new boolean[rankCount.size()];
                    String combiw = "";
                    for (int i = 0; i < randomCount; i++) {
                        int rand1;
                        while (checkDuplicate[(rand1 = randomRange(0, rankCount.size() - 1))]) {
                        }
                        combiw += rankCount.get(rand1) + "%20";
                        Log.d("combi", combiw);
                        checkDuplicate[rand1] = true;
                    }
                    coreKeywords.add(combiw);
                }
                for (int i = 0; i < coreKeywords.size(); i++) {
                    Log.d("coreKey", coreKeywords.get(i));
                }
                //                    for (String arr[] : parsedUrl) {
                //                        int count = 0;
                //                        boolean check[] = new boolean[arr.length];
                //                        ArrayList<String> strArr = new ArrayList<>();
                //
                //                        for (int i = 0; i < arr.length; i++) {
                //                            for (String rank : rankCount) {
                //                                if (arr[i].equals(rank)) {
                //                                    check[i] = true;
                //                                    strArr.add(arr[i]);
                //                                    count++;
                //                                }
                //                            }
                //                            Log.d("strArr", strArr.toString());
                //                        }
                //
                //                        int rand;
                //                        int randSize = randomRange(1, arr.length - count);
                //                        for (int i = 0; i < randSize; i++) {
                //                            while (check[(rand = randomRange(0, arr.length - 1))]) {
                //                            }
                //                            strArr.add(arr[rand]);
                //                            check[rand] = true;
                //                        }
                //                        resultArr.add(strArr);
                //                        Log.d("raa", resultArr.toString());
                //                    }
            } // end of isEmpty()

            new AsyncTask<Object, Void, List<Shop>>() {
                @Override
                protected List<Shop> doInBackground(Object... params) {
                    List<Shop> results = new ArrayList<>();

                    if (results.size() > 5)
                        results = results.subList(0, 5);

                    for (int i = 0; i < coreKeywords.size(); i++) {
                        System.out.println(coreKeywords.get(i).toString().replaceAll(", ", "%20"));
                        Log.d("uri", coreKeywords.get(i).toString().replaceAll(", ", "%20"));

                        final String xmlRaw = coreKeywords.get(i).toString().replaceAll(", ", "%20");

                        // 1
                        URL url = null;
                        try {
                            url = new URL("https://openapi.naver.com/v1/search/shop.xml?query=" + xmlRaw
                                    + "&display=50");
                        } catch (MalformedURLException e) {
                            e.printStackTrace();
                        }

                        HttpURLConnection urlConnection = null;
                        try {
                            urlConnection = (HttpURLConnection) url.openConnection();
                            urlConnection.setRequestProperty("X-Naver-Client-ID", clientID);
                            urlConnection.setRequestProperty("X-Naver-Client-Secret", clientSecret);
                            urlConnection.setRequestProperty("User-Agent", "Mozilla/5.0 ( compatible ) ");
                            urlConnection.setRequestProperty("Accept", "*/*");
                        } catch (IOException e) {
                            e.printStackTrace();
                        }

                        InputStream in = null;
                        try {
                            in = new BufferedInputStream(urlConnection.getInputStream());
                        } catch (IOException e) {
                            e.printStackTrace();
                        }

                        String data = "";
                        String msg = null;

                        BufferedReader br = null;
                        try {
                            if (in != null) {
                                br = new BufferedReader(new InputStreamReader(in, "UTF-8"));
                            }
                        } catch (UnsupportedEncodingException e) {
                            e.printStackTrace();
                        }

                        try {
                            if (br != null) {
                                while ((msg = br.readLine()) != null) {
                                    data += msg;
                                }
                            }
                        } catch (IOException e) {
                            e.printStackTrace();
                        }

                        Log.i("msg of br: ", data);

                        // 2
                        String shopResult = data;
                        try {
                            List<Shop> parsingResult = parsingShopResultXml(shopResult);
                            if (parsingResult.size() > 5)
                                parsingResult = parsingResult.subList(0, 5);

                            for (final Shop shop : parsingResult) {
                                Bitmap thumbImg = getBitmapFromURL(shop.getImage());
                                if (thumbImg != null) {
                                    ArrayList<String> keywords = new ArrayList<>(Arrays.asList(coreKeywords
                                            .get(i).replace("[", "").replace("]", "").split("%20")));
                                    String combinationKeyword = coreKeywords.get(i).replace("[", "")
                                            .replace("]", "").replaceAll("%20", " ");

                                    shop.setThumbBmp(thumbImg); //  ? Url
                                    shop.setCombinationKeyword(combinationKeyword);
                                    shop.setKeywords(keywords);
                                    results.add(shop);
                                }
                            }

                            if (results.size() > 10) // must be
                                results = results.subList(0, 10);

                            for (Shop dummyShop : results) {
                                mNaverPrImg = dummyShop.getThumbBmp();
                                Mat userSelImgTarget = new Mat(userSelImg.width(), userSelImg.height(),
                                        CvType.CV_8UC4);
                                Mat naverPrImgTarget = new Mat(mNaverPrImg.getWidth(), mNaverPrImg.getHeight(),
                                        CvType.CV_8UC4);

                                Utils.bitmapToMat(mNaverPrImg, naverPrImgTarget);
                                Imgproc.cvtColor(userSelImg, userSelImgTarget, Imgproc.COLOR_BGR2RGB);
                                Imgproc.cvtColor(naverPrImgTarget, naverPrImgTarget, Imgproc.COLOR_RGBA2RGB);

                                int ret = AkazeFeatureMatching(userSelImg.getNativeObjAddr(),
                                        naverPrImgTarget.getNativeObjAddr());

                                if (ret == 1) { // find one!
                                    DecimalFormat df = new DecimalFormat("#,###");
                                    String num = df.format(dummyShop.getLprice());
                                    int exist_flag = 0;
                                    for (int ii = 0; ii < findingItems.size(); ii++) {
                                        if (findingItems.get(ii).getProductName()
                                                .equals(dummyShop.getTitle())) {
                                            exist_flag = 1;
                                            break;
                                        }
                                    }
                                    if (exist_flag == 0) {
                                        findingItems.add(new Results_GridItem(dummyShop.getTitle(), mNaverPrImg,
                                                " " + num + "?", dummyShop.getLprice(),
                                                dummyShop.getLink(), dummyShop.getKeywords(),
                                                dummyShop.getCombinationKeyword(), dummyShop.getImage()));
                                    }
                                }
                            }
                        } catch (Exception e) {
                            e.printStackTrace();
                        }
                    } // end of for

                    return results;
                } // end of doinbackground

                @Override
                protected void onPostExecute(List<Shop> shops) {
                    super.onPostExecute(shops);

                    TextView t = (TextView) findViewById(R.id.loadingText);
                    t.setVisibility(View.GONE);
                    GridView g = (GridView) findViewById(R.id.list_view);
                    g.setVisibility(View.VISIBLE);

                    if (findingItems.size() == 0) {
                        TextView tLoad = (TextView) findViewById(R.id.loadingText);
                        tLoad.setText("   .");
                        tLoad.setVisibility(View.VISIBLE);
                        gridView.setVisibility(View.GONE);
                    } else {
                        Log.d(TAG, "finding Size!!!!" + Integer.toString(findingItems.size()));
                        Collections.sort(findingItems, new Comparator<Results_GridItem>() {
                            @Override
                            public int compare(Results_GridItem o1, Results_GridItem o2) {
                                if (o1.getPrice() > o2.getPrice()) {
                                    return 1;
                                } else if (o1.getPrice() < o2.getPrice()) {
                                    return -1;
                                } else {
                                    return 0;
                                }
                            }
                        });
                        for (int i = 0; i < findingItems.size(); i++) {
                            Log.d(TAG, "List !! " + Integer.toString(findingItems.get(i).getPrice()));
                        }
                        Log.d(TAG, "finding Size!!!!" + Integer.toString(findingItems.size()));
                        gridViewAdapter = new GridViewAdapter(getApplicationContext(), findingItems);
                        gridView.setAdapter(gridViewAdapter);
                    }
                    asyncDialog.dismiss();
                }
            }.execute();

        } // end of PostExcute
    }.execute();
}

From source file:com.trandi.opentld.tld.Tld.java

License:Apache License

/**
 * Structure the classifier into 3 stages:
 * a) patch variance//from w  w  w . j  a  v  a2 s. c om
 * b) ensemble of ferns classifier
 * c) nearest neighbour
 */
private Pair<List<DetectionStruct>, List<DetectionStruct>> detect(final Mat frame) {
    Log.i(Util.TAG, "[DETECT]");

    final List<DetectionStruct> fernClassDetected = new ArrayList<Tld.DetectionStruct>(); //dt
    final List<DetectionStruct> nnMatches = new ArrayList<Tld.DetectionStruct>(); //dbb

    // 0. Cleaning
    _boxClusterMap.clear();

    // 1. DETECTION
    final Mat img = new Mat(frame.rows(), frame.cols(), CvType.CV_8U);
    updateIntegralImgs(frame);
    Imgproc.GaussianBlur(frame, img, new Size(9, 9), 1.5);

    // Apply the Variance filter TODO : Bottleneck
    int a = 0;
    for (BoundingBox box : _grid) {
        // a) speed up by doing the features/ferns check ONLY if the variance is high enough !
        if (Util.getVar(box, _iisumJava, _iisqsumJava, _iiCols) >= _var) {
            a++;
            final Mat patch = img.submat(box);
            final int[] allFernsHashCodes = _classifierFern.getAllFernsHashCodes(patch, box.scaleIdx);
            final double averagePosterior = _classifierFern.averagePosterior(allFernsHashCodes);
            _fernDetectionNegDataForLearning.put(box, allFernsHashCodes);// store for later use in learning

            // b)
            if (averagePosterior > _classifierFern.getFernPosThreshold()) {
                fernClassDetected.add(new DetectionStruct(box, allFernsHashCodes, averagePosterior, patch));
            }
        }
    }

    Log.i(Util.TAG, a + " Bounding boxes passed the variance filter (" + _var + ")");
    Log.i(Util.TAG, fernClassDetected.size() + " Initial detected from Fern Classifier");
    if (fernClassDetected.size() == 0) {
        Log.i(Util.TAG, "[DETECT END]");
        return null;
    }

    // keep only the best
    Util.keepBestN(fernClassDetected, MAX_DETECTED, new Comparator<DetectionStruct>() {
        @Override
        public int compare(DetectionStruct detS1, DetectionStruct detS2) {
            return Double.compare(detS1.averagePosterior, detS2.averagePosterior);
        }
    });

    // 2. MATCHING using the NN classifier  c)
    for (DetectionStruct detStruct : fernClassDetected) {
        // update detStruct.patch to params.patch_size and normalise it
        Mat pattern = new Mat();
        resizeZeroMeanStdev(detStruct.patch, pattern, _params.patch_size);
        detStruct.nnConf = _classifierNN.nnConf(pattern);

        Log.i(Util.TAG, "NNConf: " + detStruct.nnConf.relativeSimilarity + " / "
                + detStruct.nnConf.conservativeSimilarity + " Threshold: " + _classifierNN.getNNThreshold());
        // only keep valid boxes
        if (detStruct.nnConf.relativeSimilarity > _classifierNN.getNNThreshold()) {
            nnMatches.add(detStruct);
        }
    }

    Log.i(Util.TAG, "[DETECT END]");
    return new Pair<List<DetectionStruct>, List<DetectionStruct>>(fernClassDetected, nnMatches);
}

From source file:com.trandi.opentld.tld.Tld.java

License:Apache License

/**
 * @param boxClusterMap INPUT / OUTPUT/*from w  ww.j  a  v  a2  s  .c  o m*/
 * @return Total clusters count
 */
private int clusterBB() {
    final int size = _boxClusterMap.size();
    // need the data in arrays
    final DetectionStruct[] dbb = _boxClusterMap.keySet().toArray(new DetectionStruct[size]);
    final int[] indexes = new int[size];
    for (int i = 0; i < size; i++) {
        indexes[i] = _boxClusterMap.get(dbb[i]);
    }

    // 1. Build proximity matrix
    final float[] data = new float[size * size];
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {
            final float d = 1 - dbb[i].detectedBB.calcOverlap(dbb[j].detectedBB);
            data[i * size + j] = d;
            data[j * size + i] = d;
        }
    }
    Mat D = new Mat(size, size, CvType.CV_32F);
    D.put(0, 0, data);

    // 2. Initialise disjoint clustering
    final int[] belongs = new int[size];
    int m = size;
    for (int i = 0; i < size; i++) {
        belongs[i] = i;
    }

    for (int it = 0; it < size - 1; it++) {
        //3. Find nearest neighbour
        float min_d = 1;
        int node_a = -1, node_b = -1;
        for (int i = 0; i < D.rows(); i++) {
            for (int j = i + 1; j < D.cols(); j++) {
                if (data[i * size + j] < min_d && belongs[i] != belongs[j]) {
                    min_d = data[i * size + j];
                    node_a = i;
                    node_b = j;
                }
            }
        }

        // are we done ?
        if (min_d > 0.5) {
            int max_idx = 0;
            for (int j = 0; j < size; j++) {
                boolean visited = false;
                for (int i = 0; i < 2 * size - 1; i++) {
                    if (belongs[j] == i) {
                        // populate the correct / aggregated cluster
                        indexes[j] = max_idx;
                        visited = true;
                    }
                }

                if (visited) {
                    max_idx++;
                }
            }

            // update the main map before going back
            for (int i = 0; i < size; i++) {
                _boxClusterMap.put(dbb[i], indexes[i]);
            }
            return max_idx;
        }

        //4. Merge clusters and assign level
        if (node_a >= 0 && node_b >= 0) { // this should always BE true, otherwise we would have returned
            for (int k = 0; k < size; k++) {
                if (belongs[k] == belongs[node_a] || belongs[k] == belongs[node_b])
                    belongs[k] = m;
            }
            m++;
        }
    }

    // there seem to be only 1 cluster
    for (int i = 0; i < size; i++) {
        _boxClusterMap.put(dbb[i], 0);
    }
    return 1;
}

From source file:com.untref.bordes.HoughCirculos.java

public static BufferedImage implementarCiculos(BufferedImage screen, int acumulador, int radioMin,
        int radioMax) {
    Mat source = new Mat(screen.getHeight(), screen.getWidth(), CvType.CV_8UC3);
    byte[] data = ((DataBufferByte) screen.getRaster().getDataBuffer()).getData();
    source.put(0, 0, data);// w  w  w. j  a v a 2s. c  o  m
    //ImageIO.write(screen, "jpg", "imagen");
    //Mat source = Highgui.imread("test.jpg", Highgui.CV_LOAD_IMAGE_COLOR);
    Mat destination = new Mat(source.rows(), source.cols(), source.type());

    Imgproc.cvtColor(source, destination, Imgproc.COLOR_RGB2GRAY);

    Imgproc.GaussianBlur(destination, destination, new Size(3, 3), 0, 0);

    Mat circles = new Mat();
    Imgproc.HoughCircles(destination, circles, Imgproc.CV_HOUGH_GRADIENT, 1, 30, 10, acumulador, radioMin,
            radioMax);

    int radius;
    org.opencv.core.Point pt;
    for (int x = 0; x < circles.cols(); x++) {
        double vCircle[] = circles.get(0, x);

        if (vCircle == null) {
            break;
        }

        pt = new org.opencv.core.Point(Math.round(vCircle[0]), Math.round(vCircle[1]));
        radius = (int) Math.round(vCircle[2]);

        // draw the found circle
        Core.circle(source, pt, radius, new Scalar(150, 0, 0), 2);
        Core.circle(source, pt, 1, new Scalar(0, 0, 0), 2);
    }
    BufferedImage res = matToBufferedImage(source);

    return res;

}

From source file:com.wallerlab.compcellscope.calcDPCTask.java

License:BSD License

protected Long doInBackground(Mat... matrix_list) {
    //int count = urls.length;
    Mat in1 = matrix_list[0];/* ww w.ja  va 2s.co m*/
    Mat in2 = matrix_list[1];
    Mat outputMat = matrix_list[2];

    Mat Mat1 = new Mat(in1.width(), in1.height(), in1.type());
    Mat Mat2 = new Mat(in2.width(), in2.height(), in2.type());
    in1.copyTo(Mat1);
    in2.copyTo(Mat2);

    Imgproc.cvtColor(Mat1, Mat1, Imgproc.COLOR_RGBA2GRAY, 1);
    Imgproc.cvtColor(Mat2, Mat2, Imgproc.COLOR_RGBA2GRAY, 1);

    Mat output = new Mat(Mat1.width(), Mat1.height(), CvType.CV_8UC4);
    Mat dpcSum = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcDifference = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcImgF = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);

    /*
    Log.d(TAG,String.format("Mat1 format is %.1f-%.1f, type: %d",Mat1.size().width,Mat1.size().height,Mat1.type()));
    Log.d(TAG,String.format("Mat2 format is %.1f-%.1f, type: %d",Mat2.size().width,Mat2.size().height,Mat2.type()));
    */

    // Convert to Floats
    Mat1.convertTo(Mat1, CvType.CV_32FC1);
    Mat2.convertTo(Mat2, CvType.CV_32FC1);
    Core.add(Mat1, Mat2, dpcSum);
    Core.subtract(Mat1, Mat2, dpcDifference);
    Core.divide(dpcDifference, dpcSum, dpcImgF);
    Core.add(dpcImgF, new Scalar(1.0), dpcImgF); // Normalize to 0-2.0
    Core.multiply(dpcImgF, new Scalar(110), dpcImgF); // Normalize to 0-255
    dpcImgF.convertTo(output, CvType.CV_8UC1); // Convert back into RGB
    Imgproc.cvtColor(output, output, Imgproc.COLOR_GRAY2RGBA, 4);

    dpcSum.release();
    dpcDifference.release();
    dpcImgF.release();
    Mat1.release();
    Mat2.release();

    Mat maskedImg = Mat.zeros(output.rows(), output.cols(), CvType.CV_8UC4);
    int radius = maskedImg.width() / 2 + 25;
    Core.circle(maskedImg, new Point(maskedImg.width() / 2, maskedImg.height() / 2), radius,
            new Scalar(255, 255, 255), -1, 8, 0);
    output.copyTo(outputMat, maskedImg);
    output.release();
    maskedImg.release();
    return null;
}

From source file:com.wallerlab.compcellscope.MultiModeView.java

License:BSD License

protected boolean initializeCamera(int width, int height) {
    Log.d(TAG, "Initialize java camera");
    boolean result = true;
    synchronized (this) {
        mCamera = null;/*from w ww.  j av a  2s.com*/

        boolean connected = false;
        int numberOfCameras = android.hardware.Camera.getNumberOfCameras();
        android.hardware.Camera.CameraInfo cameraInfo = new android.hardware.Camera.CameraInfo();
        for (int i = 0; i < numberOfCameras; i++) {
            android.hardware.Camera.getCameraInfo(i, cameraInfo);
            if (cameraInfo.facing == android.hardware.Camera.CameraInfo.CAMERA_FACING_BACK) {
                try {
                    mCamera = Camera.open(i);
                    mCameraId = i;
                    connected = true;
                } catch (RuntimeException e) {
                    Log.e(TAG, "Camera #" + i + "failed to open: " + e.getMessage());
                }
                if (connected)
                    break;
            }
        }

        if (mCamera == null)
            return false;

        /* Now set camera parameters */
        try {
            Camera.Parameters params = mCamera.getParameters();
            Log.d(TAG, "getSupportedPreviewSizes()");
            List<Camera.Size> sizes = params.getSupportedPreviewSizes();

            if (sizes != null) {
                /* Select the size that fits surface considering maximum size allowed */
                Size frameSize = calculateCameraFrameSize(sizes, new JavaCameraSizeAccessor(), height, width); //use turn around values here to get the correct prev size for portrait mode

                params.setPreviewFormat(ImageFormat.NV21);
                Log.d(TAG, "Set preview size to " + Integer.valueOf((int) frameSize.width) + "x"
                        + Integer.valueOf((int) frameSize.height));
                params.setPreviewSize((int) frameSize.width, (int) frameSize.height);

                if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH)
                    params.setRecordingHint(true);

                List<String> FocusModes = params.getSupportedFocusModes();
                if (FocusModes != null && FocusModes.contains(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO)) {
                    params.setFocusMode(Camera.Parameters.FOCUS_MODE_CONTINUOUS_VIDEO);
                }

                mCamera.setParameters(params);
                params = mCamera.getParameters();

                mFrameWidth = params.getPreviewSize().height; //the frame width and height of the super class are used to generate the cached bitmap and they need to be the size of the resulting frame
                mFrameHeight = params.getPreviewSize().width;

                int realWidth = mFrameHeight; //the real width and height are the width and height of the frame received in onPreviewFrame
                int realHeight = mFrameWidth;

                if ((getLayoutParams().width == LayoutParams.MATCH_PARENT)
                        && (getLayoutParams().height == LayoutParams.MATCH_PARENT))
                    mScale = Math.min(((float) height) / mFrameHeight, ((float) width) / mFrameWidth);
                else
                    mScale = 0;

                if (mFpsMeter != null) {
                    mFpsMeter.setResolution(mFrameWidth, mFrameHeight);
                }

                int size = mFrameWidth * mFrameHeight;
                size = size * ImageFormat.getBitsPerPixel(params.getPreviewFormat()) / 8;
                mBuffer = new byte[size];

                mCamera.addCallbackBuffer(mBuffer);
                mCamera.setPreviewCallbackWithBuffer(this);

                mFrameChain = new Mat[2];
                mFrameChain[0] = new Mat(realHeight + (realHeight / 2), realWidth, CvType.CV_8UC1); //the frame chane is still in landscape
                mFrameChain[1] = new Mat(realHeight + (realHeight / 2), realWidth, CvType.CV_8UC1);

                AllocateCache();

                mCameraFrame = new JavaCameraFrame[2];
                mCameraFrame[0] = new JavaCameraFrame(mFrameChain[0], mFrameWidth, mFrameHeight); //the camera frame is in portrait
                mCameraFrame[1] = new JavaCameraFrame(mFrameChain[1], mFrameWidth, mFrameHeight);

                if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
                    mSurfaceTexture = new SurfaceTexture(MAGIC_TEXTURE_ID);
                    mCamera.setPreviewTexture(mSurfaceTexture);
                } else
                    mCamera.setPreviewDisplay(null);

                /* Finally we are ready to start the preview */
                Log.d(TAG, "startPreview");
                mCamera.startPreview();
            } else
                result = false;
        } catch (Exception e) {
            result = false;
            e.printStackTrace();
        }
    }

    return result;
}