Example usage for org.opencv.core Mat clone

List of usage examples for org.opencv.core Mat clone

Introduction

In this page you can find the example usage for org.opencv.core Mat clone.

Prototype

public Mat clone() 

Source Link

Usage

From source file:org.openpnp.vision.FluentCv.java

License:Open Source License

private Mat get(String tag) {
    Mat mat = stored.get(tag);
    if (mat == null) {
        return null;
    }//from ww w.  ja  va2  s .co  m
    // Clone so that future writes to the pipeline Mat
    // don't overwrite our stored one.
    return mat.clone();
}

From source file:org.surmon.pattern.editor2d.components.Mapping.java

public static List<MatOfPoint> process(Mat source, List<Particle> particles) {

    Mat partImage = new Mat(source.size(), CvType.CV_8UC1);

    // Draw particles as images
    Point p;//from ww w.  jav  a  2 s  . c om
    for (Particle part : particles) {
        p = new Point(part.getPosition().toArray());
        Core.circle(partImage, p, 1, new Scalar(255));
    }

    // Blur with Gaussian kernel
    Mat blured = new Mat();
    Imgproc.GaussianBlur(partImage, blured, new Size(101, 101), -1, -1);

    // Equalize histogram
    List<Mat> eqChannels = new ArrayList<>();
    List<Mat> channels = new ArrayList<>();
    Core.split(blured, channels);

    for (Mat channel : channels) {
        Mat eqImage = new Mat();
        Imgproc.equalizeHist(channel, eqImage);
        eqChannels.add(eqImage);
    }
    Mat eqResult = new Mat();
    Core.merge(eqChannels, eqResult);

    // Binary threshold
    Mat bin = new Mat();
    Imgproc.threshold(eqResult, bin, 0, 255, Imgproc.THRESH_OTSU);
    //        Imgproc.threshold(eqResult, bin, 10, 255, Imgproc.THRESH_BINARY);

    // Find contours
    Mat imMat = bin.clone();
    Mat canny_output = new Mat();
    Mat hierarchy = new Mat();
    int thresh = 100;
    //median filter:
    List<MatOfPoint> borders = new ArrayList<>();
    Imgproc.Canny(imMat, canny_output, thresh, thresh * 2);
    Imgproc.findContours(canny_output, borders, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // Find contours

    return borders;

    //        Mat result = source.clone();
    //        Imgproc.drawContours(result, borders, -1, new Scalar(255, 0, 255));
    //        
    //        return result;
}

From source file:processdata.ExperimentalDataProcessingUI.java

private void jButtonProcessImageActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButtonProcessImageActionPerformed
    try {/*from   w  w  w.  ja v a 2 s .c o m*/
        // TODO add your handling code here:
        //load library
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        // TODO add your handling code here:
        folderName = textField2.getText();
        int currentFrameIndex = Integer.parseInt(initialFrameIndexBox.getText()) - 1;
        datasetIndex = Integer.parseInt(textField1.getText());
        String videoImageFileName = "./videoFrames//" + folderName + "//" + "frame_outVideo_"
                + currentFrameIndex + ".jpg";

        String depthFrameFileName = initialImagePath + datasetIndex + "//" + folderName + "//" + "depthData//"
                + "outDepthByte_" + currentFrameIndex;

        rgbFrame = Highgui.imread(videoImageFileName, Highgui.CV_LOAD_IMAGE_GRAYSCALE);

        depthFrame = depthDataProcessingUtilities.processDepthDataFile(depthFrameFileName, jSlider2.getValue(),
                jSlider1.getValue());

        Mat[] backgroundFrames = readBackground();
        rgbBackgroundFrame = backgroundFrames[0];
        depthBackgroundFrame = backgroundFrames[1];

        //subtract depth background
        Mat depthFrameBackgroundSubtracted = new Mat();
        Core.subtract(depthBackgroundFrame, depthFrame, depthFrameBackgroundSubtracted);
        Imgproc.threshold(depthFrameBackgroundSubtracted, depthFrameBackgroundSubtracted, 0, 255,
                Imgproc.THRESH_BINARY);
        displayImage(Mat2BufferedImage(
                videoProcessingUtilities.resizeImage(depthFrameBackgroundSubtracted, new Size(448, 234))),
                depthBckgSubtractedFrames);

        //remove the red-colored elements from depth image and leave only blue ones
        Mat depthImageCleaned = new Mat();
        Core.inRange(depthFrameBackgroundSubtracted, new Scalar(253, 0, 0), new Scalar(255, 0, 0),
                depthImageCleaned);

        //apply morphologic opening to remove noise
        Imgproc.morphologyEx(depthImageCleaned, depthImageCleaned, 2,
                Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3)));
        displayImage(
                Mat2BufferedImage(videoProcessingUtilities.resizeImage(depthImageCleaned, new Size(448, 234))),
                depthCleanedFramesPanel);

        //apply the homographic transform to cleaned depth image
        Mat hDepthImageCleaned = videoProcessingUtilities.performHomographyTransformation(depthImageCleaned,
                new Size(1920, 1080));

        //extract all contours
        //sort all extracted contours and choose top 2
        //overlay top 2 contours on the image and fill them with white color
        //mask the rgb frame
        // do all necessary rotation operations
        //offer user to save the image

        //extract all suitable contours between MIN and MAX areas:
        MatOfPoint[] contours = videoProcessingUtilities.extractLargestContours(hDepthImageCleaned, 100000,
                160000);
        System.out.println("Number of contorus extracted " + contours.length);

        //draw contours
        List<MatOfPoint> tempContours = new ArrayList<MatOfPoint>();
        Mat hDepthImageCleanedContours = hDepthImageCleaned.clone();
        for (MatOfPoint cnt : contours) {
            System.out.println("Extracted Contour Area is " + Imgproc.contourArea(cnt));
            tempContours.add(cnt);
        }
        Imgproc.cvtColor(hDepthImageCleanedContours, hDepthImageCleanedContours, Imgproc.COLOR_GRAY2BGR);
        Imgproc.drawContours(hDepthImageCleanedContours, tempContours, -1, new Scalar(0, 0, 255), 5);
        displayImage(
                Mat2BufferedImage(
                        videoProcessingUtilities.resizeImage(hDepthImageCleanedContours, new Size(448, 234))),
                extractedContoursPanel);

        //prepare final mask
        Mat hDepthImageFilledContours = new Mat(hDepthImageCleaned.rows(), hDepthImageCleaned.cols(),
                hDepthImageCleaned.type());
        Imgproc.drawContours(hDepthImageFilledContours, tempContours, -1, new Scalar(255, 255, 255), -1);
        displayImage(
                Mat2BufferedImage(
                        videoProcessingUtilities.resizeImage(hDepthImageFilledContours, new Size(448, 234))),
                maskedContoursPanel);

        //subtract video background
        //            Mat rgbFrameBackgroundSubtracted = new Mat();
        //            Core.subtract(rgbBackgroundFrame,rgbFrame, rgbFrameBackgroundSubtracted, hDepthImageCleaned);
        //            displayImage(Mat2BufferedImage(videoProcessingUtilities.resizeImage(rgbFrameBackgroundSubtracted, new Size(448,234))),videoBckgSubtractedFrames);
        //            
        //mask
        Mat preMaskedRGBFrame = new Mat();
        rgbFrame.copyTo(preMaskedRGBFrame, hDepthImageCleaned);
        displayImage(
                Mat2BufferedImage(videoProcessingUtilities.resizeImage(preMaskedRGBFrame, new Size(448, 234))),
                videoBckgSubtractedFrames);

        //postmask
        Mat betterMaskedRGBFrame = new Mat();
        rgbFrame.copyTo(betterMaskedRGBFrame, hDepthImageFilledContours);
        displayImage(
                Mat2BufferedImage(
                        videoProcessingUtilities.resizeImage(betterMaskedRGBFrame, new Size(448, 234))),
                videoMaskedPanel);

        //clear ArrayList containig all processed images
        finalImages.clear();
        javax.swing.JLabel[] jLabArray = { extractedShoePanel1, extractedShoePanel2 };
        //segment all images
        int panelIdx = 0;
        for (MatOfPoint contour : tempContours) {
            MatOfPoint2f newMatOfPoint2fContour = new MatOfPoint2f(contour.toArray());
            RotatedRect finalROI = Imgproc.minAreaRect(newMatOfPoint2fContour);
            Mat newMask = videoProcessingUtilities.getContourMasked(hDepthImageFilledContours.clone(), contour);
            Mat imageROIRegistred = new Mat();
            betterMaskedRGBFrame.copyTo(imageROIRegistred, newMask);
            Mat maskedRGBFrameROI = videoProcessingUtilities.rotateExtractedShoeprint(imageROIRegistred,
                    finalROI, new Size(500, 750), 2);
            finalImages.add(maskedRGBFrameROI);
            displayImage(
                    Mat2BufferedImage(
                            videoProcessingUtilities.resizeImage(maskedRGBFrameROI, new Size(203, 250))),
                    jLabArray[panelIdx]);
            panelIdx++;
        }

        //MatOfInt parameters = new MatOfInt();
        //parameters.fromArray(Highgui.CV_IMWRITE_JPEG_QUALITY, 100);
        //Highgui.imwrite(".//backgrounds//"+"test.jpg", depthFrameBackgroundSubtracted, parameters);

    } catch (FileNotFoundException ex) {
        Logger.getLogger(ExperimentalDataProcessingUI.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:readnumber.ImageProcessor.java

public Mat blur(Mat input, int numberOfTimes) {
    Mat sourceImage = new Mat();
    Mat destImage = input.clone();
    for (int i = 0; i < numberOfTimes; i++) {
        sourceImage = destImage.clone();
        Imgproc.blur(sourceImage, destImage, new Size(3.0, 3.0));
    }/*from w  ww. ja v  a2s.  com*/
    return destImage;
}

From source file:Reconhecimento.SaltoSegmentacaoCirculo.java

public static void medirExtensao() {

    long tempoInicial = System.currentTimeMillis();

    Mat img = new Mat();
    Mat img2 = new Mat();

    VideoCapture cap = new VideoCapture(Video.videoAtual);

    // capturar primeiro frame do video
    cap.read(img);// ww w.  j  av  a 2 s  . com

    // capturar ultimo frame do video
    boolean continuar = true;
    Mat aux = new Mat();
    while (continuar) {
        cap.read(aux);

        if (aux.size().area() > 0) {
            img2 = aux.clone();
        } else {
            continuar = false;
        }
    }

    Point centroCirculoInicial = segmentarCirculo(img);
    Point centroCirculoFinal = segmentarCirculo(img2);

    // extensao do salto em centimetros
    extensao = (centroCirculoInicial.x - centroCirculoFinal.x) * Regua.centimetrosPorPixel;
    // converter extensao do salto para metros
    extensao = extensao / 100.0;

    System.out.println(String.valueOf(extensao).substring(0, 4) + " m");

    Mat show1 = new Mat();
    Mat show2 = new Mat();
    Imgproc.resize(img, show1, new Size(420, 240));
    Imgproc.resize(img2, show2, new Size(420, 240));
    Highgui.imwrite("imagens/" + Video.nomeVideo + 420 + "x" + 2400 + ".jpg", show1);
    Highgui.imwrite("imagens/" + Video.nomeVideo + 420 + "x" + 240 + "u.jpg", show2);

    TelaMedirDistSegmentacaoCirculo tela = new TelaMedirDistSegmentacaoCirculo();
    tela.setLocation(200, 200);
    tela.jLabel1.setIcon(new ImageIcon("imagens/" + Video.nomeVideo + 420 + "x" + 2400 + ".jpg"));
    tela.jLabel2.setIcon(new ImageIcon("imagens/" + Video.nomeVideo + 420 + "x" + 240 + "u.jpg"));
    tela.jLabel4.setText(String.valueOf(extensao).substring(0, 4) + " m");
    tela.jLabel6.setText(String.valueOf(System.currentTimeMillis() - tempoInicial) + " ms");
    tela.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
    tela.setVisible(true);
}

From source file:saliency.saliency.java

/**
 * @param args the command line arguments
 *///from www.j  a  v a  2 s  .  c om
public static void main(String[] args) {
    // TODO code application logic here

    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

    Mat input_img = imread("input_img/sea.jpg");
    //fot temp test start
    Imgproc.resize(input_img, input_img, new Size(1980, 1080), 0, 0, Imgproc.INTER_LINEAR);
    //fot temp test end
    if (input_img.cols() == 0) {
        return;
    }

    //benchmark
    ///////////////////////step 1 : Extraction of Early Visual Deatures///////////////////////////////
    //intensity image: intensity_img
    Mat intensity_img = new Mat(input_img.rows(), input_img.cols(), CV_16UC1);
    //intensity = (R+G+B)/3
    int img_width = intensity_img.cols();
    int img_height = intensity_img.rows();
    int x, y;
    int i, c, s;
    int max_intensity = 0;
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            int temp_intensity = ((int) input_img.get(y, x)[0] + (int) input_img.get(y, x)[1]
                    + (int) input_img.get(y, x)[2]) / 3;
            intensity_img.put(y, x, temp_intensity);
            if (max_intensity < temp_intensity) {
                max_intensity = temp_intensity;
            }
        }
    }
    //create Guassian pyramid for intensity
    Mat[] i_gaussian_pyramid = new Mat[9];
    i_gaussian_pyramid[0] = intensity_img.clone();
    for (i = 0; i < 8; i++) {
        i_gaussian_pyramid[i + 1] = i_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(i_gaussian_pyramid[i + 1], i_gaussian_pyramid[i + 1], new Size());
    }

    //create intensity feature map using center-surround differences
    Mat[][] intensity_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            intensity_feature_map[c][s] = center_surround.main(i_gaussian_pyramid[c + 2],
                    i_gaussian_pyramid[s + c + 5], 0);
        }
    }
    //benchmark
    //imwrite("intensity_feature_map_00.bmp", intensity_feature_map[0][0]);
    //get normalized color image by I.
    Mat norm_input_img = input_img.clone();
    norm_input_img.convertTo(norm_input_img, CV_64F);
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            //normalization is only applied at the locations where I is larger than 1/10 of its maximum over entire image
            double[] temp = new double[3];
            if (intensity_img.get(y, x)[0] > (max_intensity / 10)) {
                temp[0] = norm_input_img.get(y, x)[0] / intensity_img.get(y, x)[0];
                temp[1] = norm_input_img.get(y, x)[1] / intensity_img.get(y, x)[0];
                temp[2] = norm_input_img.get(y, x)[2] / intensity_img.get(y, x)[0];
                norm_input_img.put(y, x, temp);
            } else {
                temp[0] = 0;
                temp[1] = 0;
                temp[2] = 0;
                norm_input_img.put(y, x, temp);
            }
        }
    }
    //get R G B Y(Yellow) single color channel images
    Mat r_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat g_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat b_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    Mat y_img = new Mat(input_img.rows(), input_img.cols(), CV_64FC1);
    //[0]: b [1]:g [2]:r
    for (x = 0; x < img_width; x++) {
        for (y = 0; y < img_height; y++) {
            //R = min(0,r-(g+b)/2)
            double temp_chroma = max(0, (norm_input_img.get(y, x)[2]
                    - (norm_input_img.get(y, x)[1] + norm_input_img.get(y, x)[0]) / 2));
            r_img.put(y, x, temp_chroma);
            //G = max(0,g-(r+b)/2)
            temp_chroma = max(0, (norm_input_img.get(y, x)[1]
                    - (norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[0]) / 2));
            g_img.put(y, x, temp_chroma);
            //B = max(0,b-(r+g)/2)
            temp_chroma = max(0, (norm_input_img.get(y, x)[0]
                    - (norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2));
            b_img.put(y, x, temp_chroma);
            //Y = max(0,(r+g)/2-|r-g|/2-b)
            temp_chroma = max(0,
                    ((norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2
                            - abs(norm_input_img.get(y, x)[2] + norm_input_img.get(y, x)[1]) / 2
                            - norm_input_img.get(y, x)[0]));
            y_img.put(y, x, temp_chroma);
        }
    }
    //create Gaussian pyramid for 4 color channels
    Mat[] b_gaussian_pyramid = new Mat[9];
    b_gaussian_pyramid[0] = b_img.clone();
    for (i = 0; i < 8; i++) {
        b_gaussian_pyramid[i + 1] = b_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(b_gaussian_pyramid[i + 1], b_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] g_gaussian_pyramid = new Mat[9];
    g_gaussian_pyramid[0] = g_img.clone();
    for (i = 0; i < 8; i++) {
        g_gaussian_pyramid[i + 1] = g_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(g_gaussian_pyramid[i + 1], g_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] r_gaussian_pyramid = new Mat[9];
    r_gaussian_pyramid[0] = r_img.clone();
    for (i = 0; i < 8; i++) {
        r_gaussian_pyramid[i + 1] = r_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(r_gaussian_pyramid[i + 1], r_gaussian_pyramid[i + 1], new Size());
    }
    Mat[] y_gaussian_pyramid = new Mat[9];
    y_gaussian_pyramid[0] = y_img.clone();
    for (i = 0; i < 8; i++) {
        y_gaussian_pyramid[i + 1] = y_gaussian_pyramid[i].clone();
        Imgproc.pyrDown(y_gaussian_pyramid[i + 1], y_gaussian_pyramid[i + 1], new Size());
    }
    //create color feature map using center-surround differences
    //RG(c,s) = |(R(c)-G(c))(-)(G(c)-R(c))|
    Mat[][] rg_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat r_minus_g = r_gaussian_pyramid[c + 2].clone();
            Core.subtract(r_gaussian_pyramid[c + 2], g_gaussian_pyramid[c + 2], r_minus_g);
            Mat g_minus_r = g_gaussian_pyramid[s + c + 5].clone();
            Core.subtract(g_gaussian_pyramid[s + c + 5], r_gaussian_pyramid[s + c + 5], g_minus_r);
            rg_feature_map[c][s] = center_surround.main(r_minus_g, g_minus_r, 1);
        }
    }
    //BY(c,s) = |(B(c)-Y(c))(-)(Y(c)-B(c))|
    Mat[][] by_feature_map = new Mat[3][2];
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat b_minus_g = b_gaussian_pyramid[c + 2].clone();
            Core.subtract(b_gaussian_pyramid[c + 2], y_gaussian_pyramid[c + 2], b_minus_g);
            Mat y_minus_b = y_gaussian_pyramid[s + c + 5].clone();
            Core.subtract(y_gaussian_pyramid[s + c + 5], b_gaussian_pyramid[s + c + 5], y_minus_b);
            by_feature_map[c][s] = center_surround.main(b_minus_g, y_minus_b, 1);
        }
    }
    //benchmark
    //create oriented Gabor pyramid from intensity image
    int kernel_size = 10;//31;//adjust value according to reference
    double sigma = 3;//default:  = 0.56 .  the larger , the support of the Gabor function  and the number of visible parallel excitatory and inhibitory stripe zones increases.
    double[] theta = new double[4];
    theta[0] = 0;
    theta[1] = Math.PI / 4;
    theta[2] = Math.PI / 2;
    theta[3] = Math.PI * 3 / 4;
    double lambda = 5;//36; minimum 3
    double gamma = 0.5;//0.02;
    // double psi = 0;
    Mat[][] gabor_pyramid = new Mat[4][9];
    int theta_index;
    for (theta_index = 0; theta_index < 4; theta_index++) {
        Mat gabor_kernel = Imgproc.getGaborKernel(new Size(kernel_size, kernel_size), sigma, theta[theta_index],
                lambda, gamma);
        //gabor_pyramid[theta_index][0] = intensity_img.clone();
        for (i = 0; i < 9; i++) {
            //gabor_pyramid[theta_index][i] = gabor_pyramid[theta_index][i].clone();
            gabor_pyramid[theta_index][i] = i_gaussian_pyramid[i].clone();
            Imgproc.filter2D(i_gaussian_pyramid[i], gabor_pyramid[theta_index][i], -1, gabor_kernel);
            //Imgproc.resize(gabor_pyramid[theta_index][i], gabor_pyramid[theta_index][i], new Size(), 0.5, 0.5, Imgproc.INTER_AREA);
        }
    }
    //imwrite("gabor_pyramid_01.bmp", gabor_pyramid[0][1]);
    //imwrite("gabor_pyramid_11.bmp", gabor_pyramid[1][1]);
    //imwrite("gabor_pyramid_21.bmp", gabor_pyramid[2][1]);
    //imwrite("gabor_pyramid_31.bmp", gabor_pyramid[3][1]);
    //imwrite("gabor_pyramid_03.bmp", gabor_pyramid[0][3]);
    //get orientation feature map using center-surround differences
    Mat[][][] orientation_feature_map = new Mat[4][3][2];
    for (theta_index = 0; theta_index < 4; theta_index++) {
        for (c = 0; c < 3; c++) {
            for (s = 0; s < 2; s++) {
                orientation_feature_map[theta_index][c][s] = center_surround
                        .main(gabor_pyramid[theta_index][c + 2], gabor_pyramid[theta_index][s + c + 5], 0);
            }
        }
    }
    //benchmark
    //imwrite("orientation_test_00.bmp", orientation_feature_map[0][0][0]);
    ///////////////////////step 2 : the saliency map///////////////////////////////
    //get intensity conspicuity map
    Mat intensity_conspicuity_map = Mat.zeros(intensity_feature_map[2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(intensity_feature_map[c][s]);
            Mat resized_feature_map = Mat.zeros(intensity_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, intensity_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(intensity_conspicuity_map, 1, resized_feature_map, 1.0 / 6, 0,
                    intensity_conspicuity_map);
            /*if(c == 0 && s == 0){
            imwrite("in.bmp", intensity_feature_map[c][s]);
            imwrite("map_norm.bmp",norm_out);
            imwrite("resized_feature_map.bmp", resized_feature_map);
            }*/
        }
    }
    //benchmark
    //Core.normalize(intensity_conspicuity_map, intensity_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    //imwrite("intensity_conspicuity_map.bmp", intensity_conspicuity_map);
    //get color conspicuity map
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Core.normalize(rg_feature_map[c][s], rg_feature_map[c][s], 0, 255, Core.NORM_MINMAX);
            rg_feature_map[c][s].convertTo(rg_feature_map[c][s], CV_16UC1);
            Core.normalize(by_feature_map[c][s], by_feature_map[c][s], 0, 255, Core.NORM_MINMAX);
            by_feature_map[c][s].convertTo(by_feature_map[c][s], CV_16UC1);
        }
    }
    //imwrite("test_rg.bmp",rg_feature_map[0][0]);      
    Mat color_conspicuity_map = Mat.zeros(rg_feature_map[2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(rg_feature_map[c][s]);
            Mat resized_feature_map = Mat.zeros(rg_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, rg_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(color_conspicuity_map, 1, resized_feature_map, 1.0 / 12, 0, color_conspicuity_map);
            norm_out = map_norm.main(by_feature_map[c][s]);
            resized_feature_map = Mat.zeros(by_feature_map[2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, by_feature_map[2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(color_conspicuity_map, 1, resized_feature_map, 1.0 / 12, 0, color_conspicuity_map);
        }
    }
    //benchmark
    //get orientation conspicuity map
    Mat orientation_conspicuity_map_0 = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[0][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[0][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_0, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_0);
        }
    }

    Mat orientation_conspicuity_map_1 = Mat.zeros(orientation_feature_map[1][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[1][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[1][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[1][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_1, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_1);
        }
    }
    Mat orientation_conspicuity_map_2 = Mat.zeros(orientation_feature_map[2][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[2][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[2][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[2][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_2, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_2);
        }
    }
    Mat orientation_conspicuity_map_3 = Mat.zeros(orientation_feature_map[3][2][0].size(), CV_16UC1);
    for (c = 0; c < 3; c++) {
        for (s = 0; s < 2; s++) {
            Mat norm_out = map_norm.main(orientation_feature_map[3][c][s]);
            Mat resized_feature_map = Mat.zeros(orientation_feature_map[3][2][0].size(), CV_16UC1);
            Imgproc.resize(norm_out, resized_feature_map, orientation_feature_map[3][2][0].size(), 0, 0,
                    Imgproc.INTER_LINEAR);
            Core.addWeighted(orientation_conspicuity_map_3, 1, resized_feature_map, 1.0 / 6, 0,
                    orientation_conspicuity_map_3);
        }
    }
    Mat orientation_conspicuity_map = Mat.zeros(orientation_feature_map[0][2][0].size(), CV_16UC1);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_0), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_1), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_2), 1.0 / 4, 0,
            orientation_conspicuity_map);
    Core.addWeighted(orientation_conspicuity_map, 1, map_norm.main(orientation_conspicuity_map_3), 1.0 / 4, 0,
            orientation_conspicuity_map);
    //benchmark
    Mat saliency = Mat.zeros(intensity_conspicuity_map.size(), CV_16UC1);
    Core.addWeighted(saliency, 1, map_norm.main(intensity_conspicuity_map), 1.0 / 3, 0, saliency);
    Core.addWeighted(saliency, 1, map_norm.main(color_conspicuity_map), 1.0 / 3, 0, saliency);
    Core.addWeighted(saliency, 1, map_norm.main(orientation_conspicuity_map), 1.0 / 3, 0, saliency);
    //benchmark
    Core.normalize(saliency, saliency, 0, 255, Core.NORM_MINMAX);
    //fot temp test
    Imgproc.resize(saliency, saliency, new Size(720, 480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("saliency.bmp", saliency);

    Core.normalize(intensity_conspicuity_map, intensity_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(intensity_conspicuity_map, intensity_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("intensity_conspicuity_map.bmp", intensity_conspicuity_map);
    Core.normalize(color_conspicuity_map, color_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(color_conspicuity_map, color_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("color_conspicuity_map.bmp", color_conspicuity_map);
    Core.normalize(orientation_conspicuity_map, orientation_conspicuity_map, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(orientation_conspicuity_map, orientation_conspicuity_map, new Size(720, 480), 0, 0,
            Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map.bmp", orientation_conspicuity_map);
    Imgproc.resize(input_img, input_img, new Size(720, 480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("input_img.bmp", input_img);
    //for testing algorithm
    /*
    Mat temp1 = Mat.zeros(intensity_conspicuity_map.size(), CV_16UC1);
    temp1 = map_norm.main(intensity_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("intensity.bmp", temp1);
    temp1 = map_norm.main(color_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("color.bmp", temp1);
    temp1 = map_norm.main(orientation_conspicuity_map);
    Core.normalize(temp1, temp1, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp1, temp1, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation.bmp", temp1);
            
    Mat temp2 = Mat.zeros(orientation_conspicuity_map_0.size(), CV_16UC1);
    temp2 = map_norm.main(orientation_conspicuity_map_0);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_0.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_1);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_1.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_2);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_2.bmp", temp2);
    temp2 = map_norm.main(orientation_conspicuity_map_3);
    Core.normalize(temp2, temp2, 0, 255, Core.NORM_MINMAX);
    Imgproc.resize(temp2, temp2, new Size(720,480), 0, 0, Imgproc.INTER_LINEAR);
    imwrite("orientation_conspicuity_map_3.bmp", temp2);
    */
}

From source file:samples.LWF.java

private static void save_meshed_images(double[][] puntos, File carpetaalmacen, File image, Mat mat,
        int[][] delaunay_triangles) {
    Mat mat_copy = mat.clone();
    int radii = 1000;
    for (double[] punto : puntos) {
        Imgproc.ellipse(mat_copy, new Point(punto), new Size(radii, radii), 0, 0, 0, new Scalar(0, 255, 0));
        //            Imgproc.line(mat_copy, null, null, null);
    }//from  w ww  .  j a v a2 s .  co  m
    for (int[] tri : faceTemplateTriangles) {
        Imgproc.line(mat_copy, new Point(puntos[tri[0] - 1]), new Point(puntos[tri[1] - 1]),
                new Scalar(0, 255, 0));
        Imgproc.line(mat_copy, new Point(puntos[tri[1] - 1]), new Point(puntos[tri[2] - 1]),
                new Scalar(0, 255, 0));
        Imgproc.line(mat_copy, new Point(puntos[tri[2] - 1]), new Point(puntos[tri[0] - 1]),
                new Scalar(0, 255, 0));
    }
    Imgcodecs.imwrite(carpetaalmacen.getAbsolutePath() + "\\" + image.getName(), mat_copy);
}

From source file:servlets.FillAreaByScribble.java

/**
 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods.// w w w .ja va2 s.  c o m
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    response.setContentType("text/html;charset=UTF-8");
    try (PrintWriter out = response.getWriter()) {

        String imageForTextRecognition = request.getParameter("imageForTextRecognition") + ".png";
        String isSingleRegion = request.getParameter("isSingleRegion");
        boolean makeSingleRegion = isSingleRegion.toLowerCase().equals("true");

        Mat original = ImageUtils.loadImage(imageForTextRecognition, request);
        Mat image = original.clone();
        Mat mask = Mat.zeros(image.rows() + 2, image.cols() + 2, CvType.CV_8UC1);

        String samplingPoints = request.getParameter("samplingPoints");

        Gson gson = new Gson();
        Point[] tmpPoints = gson.fromJson(samplingPoints, Point[].class);

        ArrayList<Point> userPoints = new ArrayList<Point>(Arrays.asList(tmpPoints));

        Mat userPointsImage = image.clone();

        ArrayList<Mat> maskRegions = new ArrayList<>();

        Random random = new Random();
        int b = random.nextInt(256);
        int g = random.nextInt(256);
        int r = random.nextInt(256);
        Scalar newVal = new Scalar(b, g, r);
        FloodFillFacade floodFillFacade = new FloodFillFacade();

        int k = 0;

        for (int i = 0; i < userPoints.size(); i++) {
            Point point = userPoints.get(i);

            image = floodFillFacade.fill(image, mask, (int) point.x, (int) point.y, newVal);

            Mat seedImage = original.clone();
            Core.circle(seedImage, point, 9, new Scalar(0, 0, 255), -1);
            Core.putText(userPointsImage, "" + k, new Point(point.x + 5, point.y + 5), 3, 0.5,
                    new Scalar(0, 0, 0));
            //                ImageUtils.saveImage(seedImage, "mask_" + k + "_seed" + imageForTextRecognition + ".png", request);

            if (!makeSingleRegion) {
                Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
                Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);
                Imgproc.resize(mask, mask, original.size());
            }

            //                ImageUtils.saveImage(mask, "mask_" + k + "" + imageForTextRecognition + ".png", request);

            Mat dilatedMask = new Mat();

            int elementSide = 21;
            Mat element = new Mat(elementSide, elementSide, CvType.CV_8U, new Scalar(1));
            Imgproc.morphologyEx(mask, dilatedMask, Imgproc.MORPH_DILATE, element, new Point(-1, -1), 1);
            Imgproc.resize(dilatedMask, dilatedMask, original.size());

            //                ImageUtils.saveImage(dilatedMask, "mask_" + k + "_dilated" + imageForTextRecognition + ".png", request);

            maskRegions.add(mask);

            if (!makeSingleRegion) {
                int totalRemovedPoints = filterPoints(userPoints, dilatedMask);
                if (totalRemovedPoints > 0) {
                    i = -1; // so that the algorithm starts again at the first element of the userPoints array
                }
            } else {
                filterPoints(userPoints, mask);
            }

            //                System.out.println("Total points after filtering:");
            //                System.out.println(userPoints.size());

            if (!makeSingleRegion) {
                mask = Mat.zeros(original.rows() + 2, original.cols() + 2, CvType.CV_8UC1);
            }

            k++;
        }

        ArrayList<FindingResponse> findingResponses = new ArrayList<>();

        if (makeSingleRegion) {

            Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
            Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);

            Imgproc.resize(mask, mask, image.size());

            List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
            Imgproc.findContours(mask.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                    Imgproc.CHAIN_APPROX_NONE);

            MatOfPoint biggestContour = contours.get(0); // getting the biggest contour
            double contourArea = Imgproc.contourArea(biggestContour);

            if (contours.size() > 1) {
                biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
            }

            Point[] biggestContourPoints = biggestContour.toArray();
            String path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y + " ";
            for (int i = 1; i < biggestContourPoints.length; ++i) {
                Point v = biggestContourPoints[i];
                path += "L " + (int) v.x + " " + (int) v.y + " ";
            }
            path += "Z";

            //                System.out.println("path:");
            //                System.out.println(path);

            Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
            Point massCenter = computedSearchWindow.tl();

            Scalar meanColor = Core.mean(original, mask);

            //                ImageUtils.saveImage(mask, "single_mask_" + imageForTextRecognition + ".png", request);

            FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1, contourArea);
            findingResponses.add(findingResponse);

        } else {

            float imageArea = image.cols() * image.rows();

            for (int j = 0; j < maskRegions.size(); j++) {
                Mat region = maskRegions.get(j);

                List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
                Imgproc.findContours(region.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                        Imgproc.CHAIN_APPROX_NONE);

                MatOfPoint biggestContour = contours.get(0); // getting the biggest contour

                if (contours.size() > 1) {
                    biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
                }

                double contourArea = Imgproc.contourArea(biggestContour);

                if (contourArea / imageArea < 0.8) { // only areas less than 80% of that of the image are accepted

                    Point[] biggestContourPoints = biggestContour.toArray();
                    String path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y
                            + " ";
                    for (int i = 1; i < biggestContourPoints.length; ++i) {
                        Point v = biggestContourPoints[i];
                        path += "L " + (int) v.x + " " + (int) v.y + " ";
                    }
                    path += "Z";

                    Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
                    Point massCenter = computedSearchWindow.tl();

                    //                        System.out.println("Contour area: " + contourArea);

                    Mat contoursImage = userPointsImage.clone();
                    Imgproc.drawContours(contoursImage, contours, 0, newVal, 1);

                    Scalar meanColor = Core.mean(original, region);

                    FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1,
                            contourArea);
                    findingResponses.add(findingResponse);

                    //                        ImageUtils.saveImage(contoursImage, "mask_" + j + "_contourned" + imageForTextRecognition + ".png", request);

                }

            }

        }

        String jsonResponse = gson.toJson(findingResponses, ArrayList.class);

        out.println(jsonResponse);

    }
}

From source file:servlets.processScribble.java

/**
 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods.//from w ww  .ja  v a  2s.  c o m
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    response.setContentType("text/html;charset=UTF-8");
    try (PrintWriter out = response.getWriter()) {

        String imageForTextRecognition = request.getParameter("imageForTextRecognition") + ".png";

        Mat original = ImageUtils.loadImage(imageForTextRecognition, request);
        Mat image = original.clone();
        Mat mask = Mat.zeros(image.rows() + 2, image.cols() + 2, CvType.CV_8UC1);

        String samplingPoints = request.getParameter("samplingPoints");

        Gson gson = new Gson();
        Point[] userPoints = gson.fromJson(samplingPoints, Point[].class);

        MatOfPoint points = new MatOfPoint(new Mat(userPoints.length, 1, CvType.CV_32SC2));
        int cont = 0;

        for (Point point : userPoints) {
            int y = (int) point.y;
            int x = (int) point.x;
            int[] data = { x, y };
            points.put(cont++, 0, data);
        }

        MatOfInt hull = new MatOfInt();
        Imgproc.convexHull(points, hull);

        MatOfPoint mopOut = new MatOfPoint();
        mopOut.create((int) hull.size().height, 1, CvType.CV_32SC2);

        int totalPoints = (int) hull.size().height;

        Point[] convexHullPoints = new Point[totalPoints];
        ArrayList<Point> seeds = new ArrayList<>();

        for (int i = 0; i < totalPoints; i++) {
            int index = (int) hull.get(i, 0)[0];
            double[] point = new double[] { points.get(index, 0)[0], points.get(index, 0)[1] };
            mopOut.put(i, 0, point);

            convexHullPoints[i] = new Point(point[0], point[1]);
            seeds.add(new Point(point[0], point[1]));

        }

        MatOfPoint mop = new MatOfPoint();
        mop.fromArray(convexHullPoints);

        ArrayList<MatOfPoint> arrayList = new ArrayList<MatOfPoint>();
        arrayList.add(mop);

        Random random = new Random();
        int b = random.nextInt(256);
        int g = random.nextInt(256);
        int r = random.nextInt(256);
        Scalar newVal = new Scalar(b, g, r);

        FloodFillFacade floodFillFacade = new FloodFillFacade();

        for (int i = 0; i < seeds.size(); i++) {
            Point seed = seeds.get(i);
            image = floodFillFacade.fill(image, mask, (int) seed.x, (int) seed.y, newVal);
        }

        Imgproc.drawContours(image, arrayList, 0, newVal, -1);

        Imgproc.resize(mask, mask, image.size());

        Scalar meanColor = Core.mean(original, mask);

        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\the_convexHull.png", image);
        ImageUtils.saveImage(image, imageForTextRecognition + "_the_convexHull.png", request);

        newVal = new Scalar(255, 255, 0);

        floodFillFacade.setMasked(false);
        System.out.println("Last one:");
        floodFillFacade.fill(image, mask, 211, 194, newVal);

        Core.circle(image, new Point(211, 194), 5, new Scalar(0, 0, 0), -1);
        ImageUtils.saveImage(image, imageForTextRecognition + "_final.png", request);
        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\final.png", image);

        Mat element = new Mat(3, 3, CvType.CV_8U, new Scalar(1));
        Imgproc.morphologyEx(mask, mask, Imgproc.MORPH_CLOSE, element, new Point(-1, -1), 3);

        Imgproc.resize(mask, mask, image.size());

        //            ImageUtils.saveImage(mask, "final_mask_dilated.png", request);
        //            Highgui.imwrite("C:\\Users\\Gonzalo\\Documents\\NetBeansProjects\\iVoLVER\\uploads\\final_mask_dilated.png", mask);

        List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
        Imgproc.findContours(mask.clone(), contours, new Mat(), Imgproc.RETR_EXTERNAL,
                Imgproc.CHAIN_APPROX_NONE);
        double contourArea = 0;
        String path = "";

        MatOfPoint biggestContour = contours.get(0); // getting the biggest contour
        contourArea = Imgproc.contourArea(biggestContour);

        if (contours.size() > 1) {
            biggestContour = Collections.max(contours, new ContourComparator()); // getting the biggest contour in case there are more than one
        }

        Point[] biggestContourPoints = biggestContour.toArray();
        path = "M " + (int) biggestContourPoints[0].x + " " + (int) biggestContourPoints[0].y + " ";
        for (int i = 1; i < biggestContourPoints.length; ++i) {
            Point v = biggestContourPoints[i];
            path += "L " + (int) v.x + " " + (int) v.y + " ";
        }
        path += "Z";

        System.out.println("path:");
        System.out.println(path);

        Rect computedSearchWindow = Imgproc.boundingRect(biggestContour);
        Point massCenter = computedSearchWindow.tl();

        FindingResponse findingResponse = new FindingResponse(path, meanColor, massCenter, -1, contourArea);
        String jsonResponse = gson.toJson(findingResponse, FindingResponse.class);

        out.println(jsonResponse);

        //            String jsonResponse = gson.toJson(path);
        //            out.println(jsonResponse);
    }
}

From source file:simeav.filtros.instanciaciones.DetectorConectoresEstandar.java

@Override
public Mat detectarConectores(Mat original, Mat mascaraModulos, Diagrama diagrama) {
    Mat sinCuadrados = Utils.borrarMascara(original, mascaraModulos);
    // dilato los conectores para que se superpongan con los cuadrados
    sinCuadrados = Utils.dilate(sinCuadrados);
    sinCuadrados = Utils.dilate(sinCuadrados);
    sinCuadrados = Utils.dilate(sinCuadrados);
    //elimino puntos que pueden haber quedado de la eliminacion de cuadrados
    ArrayList<MatOfPoint> contornos = Utils.detectarContornos(sinCuadrados);
    for (int i = 0; i < contornos.size(); i++) {
        double area = Imgproc.contourArea(contornos.get(i));
        if (area <= 50) {
            Imgproc.drawContours(sinCuadrados, contornos, i, new Scalar(0, 0, 0), -1);
        }//from  www  .  ja  va2 s .  c o  m
    }

    this.extremos = original.clone();
    Mat mascara;
    String tipo_extremo1, tipo_extremo2;
    // Imagen en la que se va a dibuja el resultado
    Mat conectores = Mat.zeros(sinCuadrados.size(), CvType.CV_8UC3);
    Mat contorno;
    contornos = Utils.detectarContornos(sinCuadrados);
    Mat intersec = new Mat();

    ArrayList<MatOfPoint> contornos_intersec;
    int r, g, b;
    for (int j = contornos.size() - 1; j >= 0; j--) {
        //Dibujo el contorno relleno, para despues sacar la interseccion con los cuadrados
        contorno = Mat.zeros(sinCuadrados.size(), CvType.CV_8UC3);
        Imgproc.drawContours(contorno, contornos, j, new Scalar(180, 255, 255), -1);
        Imgproc.cvtColor(contorno, contorno, Imgproc.COLOR_BGR2GRAY);
        //Calculo la interseccion con los cuadrados (se dibujan en intersec)
        Core.bitwise_and(contorno, mascaraModulos, intersec);
        //Saco los contornos de las intersecciones para saber donde estan
        contornos_intersec = Utils.detectarContornos(intersec);
        if (contornos_intersec.size() > 1) {
            Scalar color = Utils.getColorRandom();
            for (int z = 0; z < contornos_intersec.size(); z++) {
                Imgproc.drawContours(conectores, contornos_intersec, z, color, -1);
            }
            ArrayList<Point> centros_extremos = Utils.getCentros(contornos_intersec);
            for (Point centros_extremo : centros_extremos) {
                Core.circle(conectores, centros_extremo, 4, color, -1);
            }
            analizarExtremos(j, centros_extremos, diagrama);
            Conector c = diagrama.getConector(j);

            Core.rectangle(conectores, c.getModuloDesde().getRectangulo().tl(),
                    c.getModuloDesde().getRectangulo().br(), color, 3);
            Core.rectangle(conectores, c.getModuloHasta().getRectangulo().tl(),
                    c.getModuloHasta().getRectangulo().br(), color, 3);
            Point tl_desde = new Point(c.getDesde().x - 20, c.getDesde().y - 20);
            Point br_desde = new Point(c.getDesde().x + 20, c.getDesde().y + 20);
            Point tl_hasta = new Point(c.getHasta().x - 20, c.getHasta().y - 20);
            Point br_hasta = new Point(c.getHasta().x + 20, c.getHasta().y + 20);
            mascara = new Mat(sinCuadrados.size(), CvType.CV_8U, new Scalar(255, 255, 255));
            Core.rectangle(mascara, tl_desde, br_desde, new Scalar(0, 0, 0), -1);
            tipo_extremo1 = clasificarExtremo(Utils.borrarMascara(original, mascara));

            mascara = new Mat(sinCuadrados.size(), CvType.CV_8U, new Scalar(255, 255, 255));
            Core.rectangle(mascara, tl_hasta, br_hasta, new Scalar(0, 0, 0), -1);
            tipo_extremo2 = clasificarExtremo(Utils.borrarMascara(original, mascara));
            if (!tipo_extremo1.equals(tipo_extremo2)) {
                if (tipo_extremo1.equals("Normal"))
                    c.setTipo(tipo_extremo2);
                else if (tipo_extremo2.equals("Normal")) {
                    Modulo aux = c.getModuloDesde();
                    c.setDesde(c.getModuloHasta());
                    c.setHacia(aux);
                    Point p_aux = c.getDesde();
                    c.setDesde(c.getHasta());
                    c.setHasta(p_aux);
                    c.setTipo(tipo_extremo1);
                } else {
                    c.setTipo("Indeterminado");
                }
            } else {
                c.setTipo("Indeterminado");
            }
        }
    }
    return conectores;
}