Example usage for org.apache.mahout.math Vector setQuick

List of usage examples for org.apache.mahout.math Vector setQuick

Introduction

In this page you can find the example usage for org.apache.mahout.math Vector setQuick.

Prototype

void setQuick(int index, double value);

Source Link

Document

Set the value at the given index, without checking bounds

Usage

From source file:edu.rosehulman.TFPartialVectorReducer.java

License:Apache License

@Override
protected void reduce(Text key, Iterable<StringTuple> values, Context context)
        throws IOException, InterruptedException {
    Iterator<StringTuple> it = values.iterator();
    if (!it.hasNext()) {
        return;/*from w  ww . j  a v a2  s . c  o m*/
    }
    StringTuple value = it.next();

    Vector vector = new RandomAccessSparseVector(dimension, value.length()); // guess at initial size

    if (maxNGramSize >= 2) {
        ShingleFilter sf = new ShingleFilter(new IteratorTokenStream(value.getEntries().iterator()),
                maxNGramSize);
        sf.reset();
        try {
            do {
                String term = sf.getAttribute(CharTermAttribute.class).toString();
                if (!term.isEmpty() && dictionary.containsKey(term)) { // ngram
                    int termId = dictionary.get(term);
                    vector.setQuick(termId, vector.getQuick(termId) + 1);
                }
            } while (sf.incrementToken());

            sf.end();
        } finally {
            Closeables.close(sf, true);
        }
    } else {
        for (String term : value.getEntries()) {
            if (!term.isEmpty() && dictionary.containsKey(term)) { // unigram
                int termId = dictionary.get(term);
                vector.setQuick(termId, vector.getQuick(termId) + 1);
            }
        }
    }
    if (sequentialAccess) {
        vector = new SequentialAccessSparseVector(vector);
    }

    if (namedVector) {
        vector = new NamedVector(vector, key.toString());
    }

    // if the vector has no nonZero entries (nothing in the dictionary), let's not waste space sending it to disk.
    if (vector.getNumNondefaultElements() > 0) {
        VectorWritable vectorWritable = new VectorWritable(vector);
        context.write(key, vectorWritable);
    } else {
        context.getCounter("TFPartialVectorReducer", "emptyVectorCount").increment(1);
    }
}

From source file:edu.stanford.rad.naivebayes.ClassifyLines.java

License:Apache License

public static void main(String[] args) throws Exception {
    //      if (args.length < 5) {
    //         System.out.println("Arguments: [model] [label index] [dictionnary] [document frequency] [tweet file]");
    //         return;
    //      }//from  www  .  j  a  v  a  2s  .  co  m
    //      String modelPath = args[0];
    //      String labelIndexPath = args[1];
    //      String dictionaryPath = args[2];
    //      String documentFrequencyPath = args[3];
    //      String tweetsPath = args[4];

    String modelPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/classification/nb";
    String labelIndexPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/classification/nb/labelindex";
    String dictionaryPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/vectors/TFIDFsparseSeqdir/dictionary.file-0";
    String documentFrequencyPath = "/Users/saeedhp/Dropbox/Stanford/Code/NER/files/stride/ectopicPregnancy/vectors/TFIDFsparseSeqdir/df-count/part-r-00000";
    String tweetsPath = "/Users/saeedhp/Desktop/tweet/tweet.txt";

    Configuration configuration = new Configuration();

    // model is a matrix (wordId, labelId) => probability score
    NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration);

    StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model);

    // labels is a map label => classId
    Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath));
    Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath));
    Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration,
            new Path(documentFrequencyPath));

    // analyzer used to extract word from tweet
    Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);

    int labelCount = labels.size();
    int documentCount = documentFrequency.get(-1).intValue();

    System.out.println("Number of labels: " + labelCount);
    System.out.println("Number of documents in training set: " + documentCount);
    BufferedReader reader = new BufferedReader(new FileReader(tweetsPath));
    while (true) {
        String line = reader.readLine();
        if (line == null) {
            break;
        }

        String[] tokens = line.split("\t", 2);
        String tweetId = tokens[0];
        String tweet = tokens[1];

        System.out.println("Tweet: " + tweetId + "\t" + tweet);

        Multiset<String> words = ConcurrentHashMultiset.create();

        // extract words from tweet
        TokenStream ts = analyzer.tokenStream("text", new StringReader(tweet));
        CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
        ts.reset();
        int wordCount = 0;
        while (ts.incrementToken()) {
            if (termAtt.length() > 0) {
                String word = ts.getAttribute(CharTermAttribute.class).toString();
                Integer wordId = dictionary.get(word);
                // if the word is not in the dictionary, skip it
                if (wordId != null) {
                    words.add(word);
                    wordCount++;
                }
            }
        }
        // Fixed error : close ts:TokenStream
        ts.end();
        ts.close();
        // create vector wordId => weight using tfidf
        Vector vector = new RandomAccessSparseVector(10000);
        TFIDF tfidf = new TFIDF();
        for (Multiset.Entry<String> entry : words.entrySet()) {
            String word = entry.getElement();
            int count = entry.getCount();
            Integer wordId = dictionary.get(word);
            Long freq = documentFrequency.get(wordId);
            double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount);
            vector.setQuick(wordId, tfIdfValue);
        }
        // With the classifier, we get one score for each label 
        // The label with the highest score is the one the tweet is more likely to
        // be associated to
        Vector resultVector = classifier.classifyFull(vector);
        double bestScore = -Double.MAX_VALUE;
        int bestCategoryId = -1;
        for (Element element : resultVector.all()) {
            int categoryId = element.index();
            double score = element.get();
            if (score > bestScore) {
                bestScore = score;
                bestCategoryId = categoryId;
            }
            System.out.print("  " + labels.get(categoryId) + ": " + score);
        }
        System.out.println(" => " + labels.get(bestCategoryId));
    }
    analyzer.close();
    reader.close();
}

From source file:edu.utsa.sifter.som.SelfOrganizingMap.java

License:Apache License

public void updateCell(final int id, final double alpha, final IntArrayWritable doc) {
    // Scalable SOM updating, per Roussinov

    final double rate = 1 - alpha;
    final double f = CellFactors[id];
    final double nextF = rate * f; // Rule 5

    final double adjustment = alpha / (rate * CellFactors[id]); // Rule 6
    double sumSqrOld = 0.0;
    double sumSqrNew = 0.0;
    double c1 = 0.0, // Kahan summation algorithm to account for error, c.f. http://en.wikipedia.org/wiki/Kahan_summation_algorithm
            c2 = 0.0, y, t;//w  w  w  . ja v  a 2s .c om

    final Vector weights = getCell(id);

    double weight;
    double trueWeight;
    int idx;
    final int[] terms = doc.getInts();
    final int numTerms = doc.getLength();
    for (int i = 0; i < numTerms; ++i) {
        idx = terms[i];
        weight = weights.getQuick(idx);

        trueWeight = weight * f;
        y = (trueWeight * trueWeight) - c1;
        t = sumSqrOld + y; // S'(t+1) component
        c1 = (t - sumSqrOld) - y;
        sumSqrOld = t;
        // sumSqrOld += trueWeight * trueWeight;

        weight += adjustment; // adjust weight

        trueWeight = weight * nextF;

        y = (trueWeight * trueWeight) - c2;
        t = sumSqrNew + y;
        c2 = (t - sumSqrNew) - y;
        sumSqrNew = t;
        // sumSqrNew += trueWeight * trueWeight; // S_2'(t+1) component

        weights.setQuick(idx, weight);
    }
    CellFactors[id] = nextF;
    S2[id] = sumSqrNew + (rate * rate) * (S2[id] - sumSqrOld); // new S2 component
}

From source file:hadoop.api.AggregateAndRecommendReducer.java

License:Apache License

private void reduceNonBooleanData(VarLongWritable userID, Iterable<PrefAndSimilarityColumnWritable> values,
        Context context) throws IOException, InterruptedException {
    /* each entry here is the sum in the numerator of the prediction formula */
    Vector numerators = null;/*from w  w w  . ja v a 2 s  . c  o  m*/
    /* each entry here is the sum in the denominator of the prediction formula */
    Vector denominators = null;
    /* each entry here is the number of similar items used in the prediction formula */
    Vector numberOfSimilarItemsUsed = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);

    for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
        Vector simColumn = prefAndSimilarityColumn.getSimilarityColumn();
        float prefValue = prefAndSimilarityColumn.getPrefValue();
        /* count the number of items used for each prediction */
        for (Element e : simColumn.nonZeroes()) {
            int itemIDIndex = e.index();
            numberOfSimilarItemsUsed.setQuick(itemIDIndex, numberOfSimilarItemsUsed.getQuick(itemIDIndex) + 1);
        }

        if (denominators == null) {
            denominators = simColumn.clone();
        } else {
            denominators.assign(simColumn, Functions.PLUS_ABS);
        }

        if (numerators == null) {
            numerators = simColumn.clone();
            if (prefValue != BOOLEAN_PREF_VALUE) {
                numerators.assign(Functions.MULT, prefValue);
            }
        } else {
            if (prefValue != BOOLEAN_PREF_VALUE) {
                simColumn.assign(Functions.MULT, prefValue);
            }
            numerators.assign(simColumn, Functions.PLUS);
        }

    }

    if (numerators == null) {
        return;
    }

    Vector recommendationVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
    for (Element element : numerators.nonZeroes()) {
        int itemIDIndex = element.index();
        /* preference estimations must be based on at least 2 datapoints */
        if (numberOfSimilarItemsUsed.getQuick(itemIDIndex) > 1) {
            /* compute normalized prediction */
            double prediction = element.get() / denominators.getQuick(itemIDIndex);
            recommendationVector.setQuick(itemIDIndex, prediction);
        }
    }
    writeRecommendedItems(userID, recommendationVector, context);
}

From source file:mahout.classifier.Classifier.java

License:Apache License

public static void main(String[] args) throws Exception {
    if (args.length < 5) {
        System.out.println("Arguments: [model] [label index] [dictionnary] [document frequency] [tweet file]");
        return;/*w  w  w. ja  v a  2 s  . c o m*/
    }
    String modelPath = args[0];
    String labelIndexPath = args[1];
    String dictionaryPath = args[2];
    String documentFrequencyPath = args[3];
    String tweetsPath = args[4];

    Configuration configuration = new Configuration();

    // model is a matrix (wordId, labelId) => probability score
    NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration);

    StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model);

    // labels is a map label => classId
    Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath));
    Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath));
    Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration,
            new Path(documentFrequencyPath));

    // analyzer used to extract word from tweet
    Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43);

    int labelCount = labels.size();
    int documentCount = documentFrequency.get(-1).intValue();

    System.out.println("Number of labels: " + labelCount);
    System.out.println("Number of documents in training set: " + documentCount);
    BufferedReader reader = new BufferedReader(new FileReader(tweetsPath));
    while (true) {
        String line = reader.readLine();
        if (line == null) {
            break;
        }

        String[] tokens = line.split("\t", 2);
        String tweetId = tokens[0];
        String tweet = tokens[1];

        Multiset<String> words = ConcurrentHashMultiset.create();

        // extract words from tweet
        TokenStream ts = analyzer.tokenStream("text", new StringReader(tweet));
        CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
        ts.reset();
        int wordCount = 0;
        while (ts.incrementToken()) {
            if (termAtt.length() > 0) {
                String word = ts.getAttribute(CharTermAttribute.class).toString();
                Integer wordId = dictionary.get(word);
                // if the word is not in the dictionary, skip it
                if (wordId != null) {
                    words.add(word);
                    wordCount++;
                }
            }
        }

        // create vector wordId => weight using tfidf
        Vector vector = new RandomAccessSparseVector(10000);
        TFIDF tfidf = new TFIDF();
        for (Multiset.Entry<String> entry : words.entrySet()) {
            String word = entry.getElement();
            int count = entry.getCount();
            Integer wordId = dictionary.get(word);
            Long freq = documentFrequency.get(wordId);
            double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount);
            vector.setQuick(wordId, tfIdfValue);
        }
        // With the classifier, we get one score for each label 
        // The label with the highest score is the one the tweet is more likely to
        // be associated to
        Vector resultVector = classifier.classifyFull(vector);
        double bestScore = -Double.MAX_VALUE;
        int bestCategoryId = -1;
        for (Element element : resultVector.all()) {
            int categoryId = element.index();
            double score = element.get();
            if (score > bestScore) {
                bestScore = score;
                bestCategoryId = categoryId;
            }
        }
        System.out.println(labels.get(bestCategoryId) + "\t" + tweet);
    }
    analyzer.close();
    reader.close();
}

From source file:nl.gridline.zieook.inx.movielens.AggregateAndRecommendReducer.java

License:Apache License

private void reduceNonBooleanData(VarLongWritable userID, Iterable<PrefAndSimilarityColumnWritable> values,
        Context context) throws IOException, InterruptedException {
    /* each entry here is the sum in the numerator of the prediction formula */
    Vector numerators = null;//from  w  w  w.j  ava2s .com
    /* each entry here is the sum in the denominator of the prediction formula */
    Vector denominators = null;
    /* each entry here is the number of similar items used in the prediction formula */
    Vector numberOfSimilarItemsUsed = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);

    for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
        Vector simColumn = prefAndSimilarityColumn.getSimilarityColumn();
        float prefValue = prefAndSimilarityColumn.getPrefValue();
        /* count the number of items used for each prediction */
        Iterator<Vector.Element> usedItemsIterator = simColumn.iterateNonZero();
        while (usedItemsIterator.hasNext()) {
            int itemIDIndex = usedItemsIterator.next().index();
            numberOfSimilarItemsUsed.setQuick(itemIDIndex, numberOfSimilarItemsUsed.getQuick(itemIDIndex) + 1);
        }

        numerators = numerators == null
                ? prefValue == BOOLEAN_PREF_VALUE ? simColumn.clone() : simColumn.times(prefValue)
                : numerators.plus(prefValue == BOOLEAN_PREF_VALUE ? simColumn : simColumn.times(prefValue));

        simColumn.assign(ABSOLUTE_VALUES);
        denominators = denominators == null ? simColumn : denominators.plus(simColumn);
    }

    if (numerators == null) {
        return;
    }

    Vector recommendationVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
    Iterator<Vector.Element> iterator = numerators.iterateNonZero();
    while (iterator.hasNext()) {
        Vector.Element element = iterator.next();
        int itemIDIndex = element.index();
        /* preference estimations must be based on at least 2 datapoints */
        if (numberOfSimilarItemsUsed.getQuick(itemIDIndex) > 1) {
            /* compute normalized prediction */
            double prediction = element.get() / denominators.getQuick(itemIDIndex);
            recommendationVector.setQuick(itemIDIndex, prediction);
        }
    }
    writeRecommendedItems(userID, recommendationVector, context);
}

From source file:org.gpfvic.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob.java

License:Apache License

private void initializeM(Vector averageRatings) throws IOException {
    Random random = RandomUtils.getRandom();

    FileSystem fs = FileSystem.get(pathToM(-1).toUri(), getConf());
    try (SequenceFile.Writer writer = new SequenceFile.Writer(fs, getConf(),
            new Path(pathToM(-1), "part-m-00000"), IntWritable.class, VectorWritable.class)) {
        IntWritable index = new IntWritable();
        VectorWritable featureVector = new VectorWritable();

        for (Vector.Element e : averageRatings.nonZeroes()) {
            Vector row = new DenseVector(numFeatures);
            row.setQuick(0, e.get());
            for (int m = 1; m < numFeatures; m++) {
                row.setQuick(m, random.nextDouble());
            }//from  ww w. j  av a 2s  . c om
            index.set(e.index());
            featureVector.set(row);
            writer.append(index, featureVector);
        }
    }
}

From source file:org.gpfvic.mahout.cf.taste.hadoop.preparation.ToItemVectorsMapper.java

License:Apache License

@Override
protected void map(VarLongWritable rowIndex, VectorWritable vectorWritable, Context ctx)
        throws IOException, InterruptedException {
    Vector userRatings = vectorWritable.get();

    int column = TasteHadoopUtils.idToIndex(rowIndex.get());

    itemVectorWritable.setWritesLaxPrecision(true);

    Vector itemVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 1);
    for (Vector.Element elem : userRatings.nonZeroes()) {
        itemID.set(elem.index());//  w w  w  .  ja v a2s  .c  om
        itemVector.setQuick(column, elem.get());
        itemVectorWritable.set(itemVector);
        ctx.write(itemID, itemVectorWritable);
        // reset vector for reuse
        itemVector.setQuick(elem.index(), 0.0);
    }
}

From source file:org.hf.mls.mahout.cf.taste.hadoop.preparation.ToItemVectorsMapper.java

License:Apache License

@Override
protected void map(VarLongWritable rowIndex, VectorWritable vectorWritable, Context ctx)
        throws IOException, InterruptedException {
    Vector userRatings = vectorWritable.get();

    int numElementsBeforeSampling = userRatings.getNumNondefaultElements();
    userRatings = Vectors.maybeSample(userRatings, sampleSize);
    int numElementsAfterSampling = userRatings.getNumNondefaultElements();

    int column = TasteHadoopUtils.idToIndex(rowIndex.get());

    itemVectorWritable.setWritesLaxPrecision(true);

    Vector itemVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 1);
    for (Vector.Element elem : userRatings.nonZeroes()) {
        itemID.set(elem.index());//from w w  w .  j a  v  a  2  s .  c  o m
        itemVector.setQuick(column, elem.get());
        itemVectorWritable.set(itemVector);
        ctx.write(itemID, itemVectorWritable);
        // reset vector for reuse
        itemVector.setQuick(elem.index(), 0.0);
    }

    ctx.getCounter(Elements.USER_RATINGS_USED).increment(numElementsAfterSampling);
    ctx.getCounter(Elements.USER_RATINGS_NEGLECTED)
            .increment(numElementsBeforeSampling - numElementsAfterSampling);
}

From source file:org.qcri.pca.MeanAndSpanJob.java

/**
 * This method overrides the Vector.assign method to allow optimization for
 * ZeroIndifferent functions//from w ww. jav a 2s .  co  m
 * 
 * @param vector
 *          the vector to be updated
 * @param other
 *          the other vector
 * @param function
 *          the function that operates on elements of the two vectors
 * @return the modified vector
 */
static public Vector vectorAssign(Vector vector, Vector other, ZeroIndifferentFunc function) {
    if (vector.size() != other.size()) {
        throw new CardinalityException(vector.size(), other.size());
    }
    // special case: iterate only over the non-zero elements of the vector to
    // add
    Iterator<Element> it = other.nonZeroes().iterator();
    Element e;
    while (it.hasNext() && (e = it.next()) != null) {
        double val = vector.getQuick(e.index());
        double newVal = function.apply(val, e.get());
        vector.setQuick(e.index(), newVal);
    }
    return vector;
}