Example usage for org.apache.mahout.math Vector maxValueIndex

List of usage examples for org.apache.mahout.math Vector maxValueIndex

Introduction

In this page you can find the example usage for org.apache.mahout.math Vector maxValueIndex.

Prototype

int maxValueIndex();

Source Link

Usage

From source file:edu.utsa.sifter.som.SelfOrganizingMap.java

License:Apache License

int maxTermDifference(final int tID, final int uID) {
    final Vector t = getCell(tID);
    final Vector u = getCell(uID);
    final Vector diff = t.minus(u);
    final double maxValue = diff.maxValue();
    final double minValue = diff.minValue();

    if (minValue < 0 && Math.abs(minValue) > maxValue) { // even if maxValue is negative, this will hold
        return -diff.minValueIndex();
    } else {/* www  .  j  av a  2  s  .c o  m*/
        return diff.maxValueIndex();
    }
}

From source file:hk.newsRecommender.Classify.java

License:Open Source License

public static void test(Configuration conf, String testFile, int labelIndex) throws IOException {
    System.out.println("~~~ begin to test ~~~");
    AbstractNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(naiveBayesModel);

    FileSystem fsopen = FileSystem.get(conf);
    FSDataInputStream in = fsopen.open(new Path(testFile));
    CSVReader csv = new CSVReader(new InputStreamReader(in));
    csv.readNext(); // skip header

    String[] line = null;//from   w w w  .  jav a 2 s  .co  m
    double totalSampleCount = 0.;
    double correctClsCount = 0.;
    //       String str="10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,8,7,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,14,0,8";
    //       List<String> newsList=new ArrayList<String>();
    //       newsList.add(str);
    //       for(int j=0;j<newsList.size();j++){
    //          line=newsList.get(j).split(",");
    while ((line = csv.readNext()) != null) {
        //          ??ID???ID?
        //          ????
        List<String> tmpList = Lists.newArrayList(line);
        String label = tmpList.get(labelIndex);
        tmpList.remove(labelIndex);
        totalSampleCount++;
        Vector vector = new RandomAccessSparseVector(tmpList.size(), tmpList.size());
        for (int i = 0; i < tmpList.size(); i++) {
            String tempStr = tmpList.get(i);
            if (StringUtils.isNumeric(tempStr)) {
                vector.set(i, Double.parseDouble(tempStr));
            } else {
                Long id = strOptionMap.get(tempStr);
                if (id != null)
                    vector.set(i, id);
                else {
                    System.out.println(StringUtils.join(tempStr, ","));
                    continue;
                }
            }
        }
        Vector resultVector = classifier.classifyFull(vector);
        int classifyResult = resultVector.maxValueIndex();
        if (StringUtils.equals(label, strLabelList.get(classifyResult))) {
            correctClsCount++;
        } else {
            //             line[labelIndex]????ID??
            //             ???????
            //             
            System.out.println("CorrectORItem=" + label + "\tClassify=" + strLabelList.get(classifyResult));
        }
    }
    //       System.out.println("Correct Ratio:" + (correctClsCount / totalSampleCount));
}

From source file:technobium.OnlineLogisticRegressionTest.java

License:Apache License

public static void main(String[] args) throws Exception {
    // this test trains a 3-way classifier on the famous Iris dataset.
    // a similar exercise can be accomplished in R using this code:
    //    library(nnet)
    //    correct = rep(0,100)
    //    for (j in 1:100) {
    //      i = order(runif(150))
    //      train = iris[i[1:100],]
    //      test = iris[i[101:150],]
    //      m = multinom(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, train)
    //      correct[j] = mean(predict(m, newdata=test) == test$Species)
    //    }//www  . j  a v a  2  s  . c om
    //    hist(correct)
    //
    // Note that depending on the training/test split, performance can be better or worse.
    // There is about a 5% chance of getting accuracy < 90% and about 20% chance of getting accuracy
    // of 100%
    //
    // This test uses a deterministic split that is neither outstandingly good nor bad

    RandomUtils.useTestSeed();
    Splitter onComma = Splitter.on(",");

    // read the data
    List<String> raw = Resources.readLines(Resources.getResource("iris.csv"), Charsets.UTF_8);

    // holds features
    List<Vector> data = Lists.newArrayList();

    // holds target variable
    List<Integer> target = Lists.newArrayList();

    // for decoding target values
    Dictionary dict = new Dictionary();

    // for permuting data later
    List<Integer> order = Lists.newArrayList();

    for (String line : raw.subList(1, raw.size())) {
        // order gets a list of indexes
        order.add(order.size());

        // parse the predictor variables
        Vector v = new DenseVector(5);
        v.set(0, 1);
        int i = 1;
        Iterable<String> values = onComma.split(line);
        for (String value : Iterables.limit(values, 4)) {
            v.set(i++, Double.parseDouble(value));
        }
        data.add(v);

        // and the target
        target.add(dict.intern(Iterables.get(values, 4)));
    }

    // randomize the order ... original data has each species all together
    // note that this randomization is deterministic
    Random random = RandomUtils.getRandom();
    Collections.shuffle(order, random);

    // select training and test data
    List<Integer> train = order.subList(0, 100);
    List<Integer> test = order.subList(100, 150);
    logger.warn("Training set = {}", train);
    logger.warn("Test set = {}", test);

    // now train many times and collect information on accuracy each time
    int[] correct = new int[test.size() + 1];
    for (int run = 0; run < 200; run++) {
        OnlineLogisticRegression lr = new OnlineLogisticRegression(3, 5, new L2(1));
        // 30 training passes should converge to > 95% accuracy nearly always but never to 100%
        for (int pass = 0; pass < 30; pass++) {
            Collections.shuffle(train, random);
            for (int k : train) {
                lr.train(target.get(k), data.get(k));
            }
        }

        // check the accuracy on held out data
        int x = 0;
        int[] count = new int[3];
        for (Integer k : test) {
            Vector vt = lr.classifyFull(data.get(k));
            int r = vt.maxValueIndex();
            count[r]++;
            x += r == target.get(k) ? 1 : 0;
        }
        correct[x]++;
    }

    // verify we never saw worse than 95% correct,
    for (int i = 0; i < Math.floor(0.95 * test.size()); i++) {
        System.out.println(String.format("%d trials had unacceptable accuracy of only %.0f%%: ", correct[i],
                100.0 * i / test.size()));
    }
    // nor perfect
    System.out.println(String.format("%d trials had unrealistic accuracy of 100%%", correct[test.size() - 1]));
}

From source file:tv.floe.metronome.classification.logisticregression.iterativereduce.POLRWorkerNode.java

License:Apache License

/**
 * The IR::Compute method - this is where we do the next batch of records for
 * SGD/*from  w w  w  . ja va 2s  .c  o  m*/
 */
@Override
public ParameterVectorUpdatable compute() {

    Text value = new Text();
    long batch_vec_factory_time = 0;

    boolean result = true;
    //boolean processBatch = false;

    while (this.lineParser.hasMoreRecords()) {

        try {
            result = this.lineParser.next(value);
        } catch (IOException e1) {
            // TODO Auto-generated catch block
            e1.printStackTrace();
        }

        if (result) {

            long startTime = System.currentTimeMillis();

            Vector v = new RandomAccessSparseVector(this.FeatureVectorSize);
            int actual = -1;
            try {

                actual = this.VectorFactory.processLine(value.toString(), v);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }

            long endTime = System.currentTimeMillis();

            batch_vec_factory_time += (endTime - startTime);

            // calc stats ---------

            double mu = Math.min(k + 1, 200);
            double ll = this.polr.logLikelihood(actual, v);

            metrics.AvgLogLikelihood = metrics.AvgLogLikelihood + (ll - metrics.AvgLogLikelihood) / mu;

            if (Double.isNaN(metrics.AvgLogLikelihood)) {
                metrics.AvgLogLikelihood = 0;
            }

            Vector p = new DenseVector(this.num_categories);
            this.polr.classifyFull(p, v);
            int estimated = p.maxValueIndex();
            int correct = (estimated == actual ? 1 : 0);
            metrics.AvgCorrect = metrics.AvgCorrect + (correct - metrics.AvgCorrect) / mu;
            this.polr.train(actual, v);

            k++;
            metrics.TotalRecordsProcessed = k;
            //          if (x == this.BatchSize - 1) {

            /*            System.err
                            .printf(
            "Worker %s:\t Iteration: %s, Trained Recs: %10d, AvgLL: %10.3f, Percent Correct: %10.2f, VF: %d\n",
            this.internalID, this.CurrentIteration, k, metrics.AvgLogLikelihood,
            metrics.AvgCorrect * 100, batch_vec_factory_time);
              */
            //          }

            this.polr.close();

        } else {

            //          this.LocalBatchCountForIteration++;
            // this.input_split.ResetToStartOfSplit();
            // nothing else to process in split!
            //          break;

        } // if

    } // for the batch size

    System.err.printf(
            "Worker %s:\t Iteration: %s, Trained Recs: %10d, AvgLL: %10.3f, Percent Correct: %10.2f, VF: %d\n",
            this.internalID, this.CurrentIteration, k, metrics.AvgLogLikelihood, metrics.AvgCorrect * 100,
            batch_vec_factory_time);

    /*    } else {
          System.err
          .printf(
              "Worker %s:\t Trained Recs: %10d,  AvgLL: %10.3f, Percent Correct: %10.2f, [Done With Iteration]\n",
              this.internalID, k, metrics.AvgLogLikelihood,
              metrics.AvgCorrect * 100);
                  
        } // if 
      */
    return new ParameterVectorUpdatable(this.GenerateUpdate());
}