List of usage examples for opennlp.tools.util StringList StringList
public StringList(String... tokens)
From source file:opennlp.tools.languagemodel.NgramLanguageModelTest.java
@Test public void testEmptyVocabularyProbability() throws Exception { NGramLanguageModel model = new NGramLanguageModel(); Assert.assertEquals("probability with an empty vocabulary is always 0", 0d, model.calculateProbability(new StringList("")), 0d); Assert.assertEquals("probability with an empty vocabulary is always 0", 0d, model.calculateProbability(new StringList("1", "2", "3")), 0d); }
From source file:opennlp.tools.languagemodel.NgramLanguageModelTest.java
@Test public void testTrigramLanguageModelCreationFromText() throws Exception { int ngramSize = 3; NGramLanguageModel languageModel = new NGramLanguageModel(ngramSize); InputStream stream = getClass().getResourceAsStream("/opennlp/tools/languagemodel/sentences.txt"); for (String line : IOUtils.readLines(stream)) { String[] array = line.split(" "); List<String> split = Arrays.asList(array); List<String> generatedStrings = NGramGenerator.generate(split, ngramSize, " "); for (String generatedString : generatedStrings) { String[] tokens = generatedString.split(" "); if (tokens.length > 0) { languageModel.add(new StringList(tokens), 1, ngramSize); }/*from www . jav a 2 s.c o m*/ } } StringList tokens = languageModel.predictNextTokens(new StringList("neural", "network", "language")); Assert.assertNotNull(tokens); Assert.assertEquals(new StringList("models"), tokens); double p1 = languageModel.calculateProbability(new StringList("neural", "network", "language", "models")); double p2 = languageModel.calculateProbability(new StringList("neural", "network", "language", "model")); Assert.assertTrue(p1 > p2); }
From source file:opennlp.tools.ngram.NGramModelTest.java
@Test public void testZeroGetCount() throws Exception { NGramModel ngramModel = new NGramModel(); int count = ngramModel.getCount(new StringList("")); Assert.assertEquals(0, count);/*from w w w . ja va2s . c o m*/ Assert.assertEquals(0, ngramModel.size()); }