Example usage for java.util StringTokenizer nextToken

List of usage examples for java.util StringTokenizer nextToken

Introduction

In this page you can find the example usage for java.util StringTokenizer nextToken.

Prototype

public String nextToken() 

Source Link

Document

Returns the next token from this string tokenizer.

Usage

From source file:com.liusoft.dlog4j.search.SearchProxy.java

/**
 * ?/* w w w. j a va2  s . c o  m*/
 * @param params
 * @return
 * @throws Exception 
 */
public static List search(SearchParameter params) throws Exception {
    if (params == null)
        return null;

    SearchEnabled searching = (SearchEnabled) params.getSearchObject().newInstance();

    StringBuffer path = new StringBuffer(_baseIndexPath);
    path.append(searching.name());
    File f = new File(path.toString());
    if (!f.exists())
        return null;

    IndexSearcher searcher = new IndexSearcher(path.toString());

    //?
    BooleanQuery comboQuery = new BooleanQuery();
    int _query_count = 0;
    StringTokenizer st = new StringTokenizer(params.getSearchKey());
    while (st.hasMoreElements()) {
        String q = st.nextToken();
        String[] indexFields = searching.getIndexFields();
        for (int i = 0; i < indexFields.length; i++) {
            QueryParser qp = new QueryParser(indexFields[i], analyzer);
            try {
                Query subjectQuery = qp.parse(q);
                comboQuery.add(subjectQuery, BooleanClause.Occur.SHOULD);
                _query_count++;
            } catch (Exception e) {
                log.error("Add query parameter failed. key=" + q, e);
            }
        }
    }

    if (_query_count == 0)//?
        return null;

    //??
    MultiFilter multiFilter = null;
    HashMap conds = params.getConditions();
    if (conds != null) {
        Iterator keys = conds.keySet().iterator();
        while (keys.hasNext()) {
            if (multiFilter == null)
                multiFilter = new MultiFilter(0);
            String key = (String) keys.next();
            multiFilter.add(new FieldFilter(key, conds.get(key).toString()));
        }
    }

    /*
     * Creates a sort, possibly in reverse,
     * by terms in the given field with the type of term values explicitly given.
     */
    SortField[] s_fields = new SortField[2];
    s_fields[0] = SortField.FIELD_SCORE;
    s_fields[1] = new SortField(searching.getKeywordField(), SortField.INT, true);
    Sort sort = new Sort(s_fields);

    Hits hits = searcher.search(comboQuery, multiFilter, sort);
    int numResults = hits.length();
    //System.out.println(numResults + " found............................");
    int result_count = Math.min(numResults, MAX_RESULT_COUNT);
    List results = new ArrayList(result_count);
    for (int i = 0; i < result_count; i++) {
        Document doc = (Document) hits.doc(i);
        //Java
        Object result = params.getSearchObject().newInstance();
        Enumeration fields = doc.fields();
        while (fields.hasMoreElements()) {
            Field field = (Field) fields.nextElement();
            //System.out.println(field.name()+" -- "+field.stringValue());
            if (CLASSNAME_FIELD.equals(field.name()))
                continue;
            //?
            if (!field.isStored())
                continue;
            //System.out.println("=========== begin to mapping ============");
            //String --> anything
            Class fieldType = getNestedPropertyType(result, field.name());
            //System.out.println(field.name()+", class = " + fieldType.getName());
            Object fieldValue = null;
            if (fieldType.equals(Date.class))
                fieldValue = new Date(Long.parseLong(field.stringValue()));
            else
                fieldValue = ConvertUtils.convert(field.stringValue(), fieldType);
            //System.out.println(fieldValue+", class = " + fieldValue.getClass().getName());
            setNestedProperty(result, field.name(), fieldValue);
        }
        results.add(result);
    }

    return results;
}

From source file:amqp.spring.camel.component.SpringAMQPConsumer.java

protected static Map<String, Object> parseKeyValues(String routingKey) {
    StringTokenizer tokenizer = new StringTokenizer(routingKey, "&|");
    Map<String, Object> pairs = new HashMap<String, Object>();
    while (tokenizer.hasMoreTokens()) {
        String token = tokenizer.nextToken();
        String[] keyValue = token.split("=");
        if (keyValue.length != 2)
            throw new IllegalArgumentException(
                    "Couldn't parse key/value pair [" + token + "] out of string: " + routingKey);

        pairs.put(keyValue[0], keyValue[1]);
    }/* w  ww. j  a  v a 2s.c  o m*/

    return pairs;
}

From source file:edu.stanford.muse.index.NEROld.java

public static void readLocationNamesToSuppress() {
    String suppress_file = "suppress.locations.txt.gz";
    try {// w ww  . j a  v a2  s  .c o  m
        InputStream is = new GZIPInputStream(NER.class.getClassLoader().getResourceAsStream(suppress_file));
        LineNumberReader lnr = new LineNumberReader(new InputStreamReader(is, "UTF-8"));
        while (true) {
            String line = lnr.readLine();
            if (line == null)
                break;
            StringTokenizer st = new StringTokenizer(line);
            if (st.hasMoreTokens()) {
                String s = st.nextToken();
                if (!s.startsWith("#"))
                    locationsToSuppress.add(s.toLowerCase());
            }
        }
    } catch (Exception e) {
        log.warn("Error: unable to read " + suppress_file);
        Util.print_exception(e);
    }
    log.info(locationsToSuppress.size() + " names to suppress as locations");
}

From source file:net.pms.encoders.AviSynthFFmpeg.java

public static File getAVSScript(String filename, DLNAMediaSubtitle subTrack, int fromFrame, int toFrame,
        String frameRateRatio, String frameRateNumber, PmsConfiguration configuration) throws IOException {
    String onlyFileName = filename.substring(1 + filename.lastIndexOf('\\'));
    File file = new File(configuration.getTempFolder(), "pms-avs-" + onlyFileName + ".avs");
    try (PrintWriter pw = new PrintWriter(new FileOutputStream(file))) {
        String numerator;//from   w ww .j  a  v  a  2  s  .c  o  m
        String denominator;

        if (frameRateRatio != null && frameRateNumber != null) {
            if (frameRateRatio.equals(frameRateNumber)) {
                // No ratio was available
                numerator = frameRateRatio;
                denominator = "1";
            } else {
                String[] frameRateNumDen = frameRateRatio.split("/");
                numerator = frameRateNumDen[0];
                denominator = "1001";
            }
        } else {
            // No framerate was given so we should try the most common one
            numerator = "24000";
            denominator = "1001";
            frameRateNumber = "23.976";
        }

        String assumeFPS = ".AssumeFPS(" + numerator + "," + denominator + ")";

        String directShowFPS = "";
        if (!"0".equals(frameRateNumber)) {
            directShowFPS = ", fps=" + frameRateNumber;
        }

        String convertfps = "";
        if (configuration.getFfmpegAvisynthConvertFps()) {
            convertfps = ", convertfps=true";
        }

        File f = new File(filename);
        if (f.exists()) {
            filename = ProcessUtil.getShortFileNameIfWideChars(filename);
        }

        String movieLine = "DirectShowSource(\"" + filename + "\"" + directShowFPS + convertfps + ")"
                + assumeFPS;
        String mtLine1 = "";
        String mtLine2 = "";
        String interframeLines = null;
        String interframePath = configuration.getInterFramePath();

        int Cores = 1;
        if (configuration.isFfmpegAviSynthMultithreading()) {
            Cores = configuration.getNumberOfCpuCores();

            // Goes at the start of the file to initiate multithreading
            mtLine1 = "SetMemoryMax(512)\nSetMTMode(3," + Cores + ")\n";

            // Goes after the input line to make multithreading more efficient
            mtLine2 = "SetMTMode(2)";
        }

        // True Motion
        if (configuration.getFfmpegAvisynthInterFrame()) {
            String GPU = "";
            movieLine += ".ConvertToYV12()";

            // Enable GPU to assist with CPU
            if (configuration.getFfmpegAvisynthInterFrameGPU() && interframegpu.isEnabled()) {
                GPU = ", GPU=true";
            }

            interframeLines = "\n" + "PluginPath = \"" + interframePath + "\"\n"
                    + "LoadPlugin(PluginPath+\"svpflow1.dll\")\n" + "LoadPlugin(PluginPath+\"svpflow2.dll\")\n"
                    + "Import(PluginPath+\"InterFrame2.avsi\")\n" + "InterFrame(Cores=" + Cores + GPU
                    + ", Preset=\"Faster\")\n";
        }

        String subLine = null;
        if (subTrack != null && configuration.isAutoloadExternalSubtitles()
                && !configuration.isDisableSubtitles()) {
            if (subTrack.getExternalFile() != null) {
                LOGGER.info("AviSynth script: Using subtitle track: " + subTrack);
                String function = "TextSub";
                if (subTrack.getType() == SubtitleType.VOBSUB) {
                    function = "VobSub";
                }
                subLine = function + "(\""
                        + ProcessUtil.getShortFileNameIfWideChars(subTrack.getExternalFile().getAbsolutePath())
                        + "\")";
            }
        }

        ArrayList<String> lines = new ArrayList<>();

        lines.add(mtLine1);

        boolean fullyManaged = false;
        String script = "<movie>\n<sub>\n";
        StringTokenizer st = new StringTokenizer(script, PMS.AVS_SEPARATOR);
        while (st.hasMoreTokens()) {
            String line = st.nextToken();
            if (line.contains("<movie") || line.contains("<sub")) {
                fullyManaged = true;
            }
            lines.add(line);
        }

        if (configuration.getFfmpegAvisynthInterFrame()) {
            lines.add(mtLine2);
            lines.add(interframeLines);
        }

        if (fullyManaged) {
            for (String s : lines) {
                if (s.contains("<moviefilename>")) {
                    s = s.replace("<moviefilename>", filename);
                }

                s = s.replace("<movie>", movieLine);
                s = s.replace("<sub>", subLine != null ? subLine : "#");
                pw.println(s);
            }
        } else {
            pw.println(movieLine);
            if (subLine != null) {
                pw.println(subLine);
            }
            pw.println("clip");

        }
    }
    file.deleteOnExit();
    return file;
}

From source file:com.cisco.dvbu.ps.common.scriptutil.ScriptUtil.java

/**
 * Create a command file for UNIX or Windows from name value pairs strings constructed based on passed in xml content
 * @param xmlFilePath xml File Path//from  ww w. ja v  a  2  s .c om
 * @param nodeName String return name values for passed in node name and node value. * is treated as all nodes
 * @param nodeValue String return name values for passed in node name and node value. * is treated as all node values
 * @param options additional options to return the node name or attributes such as "-noid -noattributes"
 * @param commandOutputFile The fully qualifed path of the command output file
 * @param commandHeader The command file header such as #!/bin/bash
 * @param commandType The type of command file [UNIX|WINDOWS] {use export for UNIX, use set for WINDOWS)
 *           UNIX: export name="value"
 *        WINDOWS: set name=value
 * usage createCommandFileFromXML xmlFilePath * * "-noid -noattributes" /Users/rthummal/mywork/clients/ps/CisDeployTool/resources/abc.sh #!/bin/bash UNIX
 * usage createCommandFileFromXML xmlFilePath hostname localhost "" C:\opt\pdtool/abc.bat "echo off"    WINDOWS
 * usage createCommandFileFromXML xmlFilePath hostname * "-noid" /opt/pdtool/abc.sh #!/bin/bash UNIX
 */
public static void createCommandFileFromXML(String xmlFilePath, String nodeName, String nodeValue,
        String options, String commandOutputFile, String commandHeader, String commandType) {
    boolean win = false;
    String cmdPrefix = "export ";
    if (commandType != null && commandType.equals("WINDOWS")) {
        win = true;
        cmdPrefix = "set ";
    }

    String nameValuePairs = XMLUtils.getNameValuePairsFromXML(xmlFilePath, null, null, nodeName, nodeValue,
            options);
    if (nameValuePairs != null) {
        StringBuffer sb = new StringBuffer();
        sb.append(commandHeader + "\n");
        StringTokenizer st = new StringTokenizer(nameValuePairs, "|");
        while (st.hasMoreTokens()) {
            sb.append(cmdPrefix);

            String nameValuePair = st.nextToken();

            if (!win) {
                nameValuePair = nameValuePair.replace("=", "=\"");
                nameValuePair += "\"";
            }
            sb.append(nameValuePair + "\n");
        }

        try {
            Writer out = new OutputStreamWriter(new FileOutputStream(commandOutputFile));
            out.write(sb.toString());
            out.flush();
        } catch (FileNotFoundException e) {
            logger.error("Could not wirte to command file " + commandOutputFile, e);
            throw new ValidationException(e.getMessage(), e);

        } catch (IOException e) {
            logger.error("Could not wirte to command file " + commandOutputFile, e);
            throw new ValidationException(e.getMessage(), e);
        }

    }

}

From source file:keel.Algorithms.Neural_Networks.NNEP_Clas.KEELWrapperClas.java

/**
 * <p>/*from   w w w  . j  av a  2 s. c om*/
 * Configure the execution of the algorithm.
 * 
 * @param jobFilename Name of the KEEL file with properties of the
 *                    execution
 *  </p>                  
 */

@SuppressWarnings("unchecked")
private static void configureJob(String jobFilename) {

    Properties props = new Properties();

    try {
        InputStream paramsFile = new FileInputStream(jobFilename);
        props.load(paramsFile);
        paramsFile.close();
    } catch (IOException ioe) {
        ioe.printStackTrace();
        System.exit(0);
    }

    // Files training and test
    String trainFile;
    String testFile;
    StringTokenizer tokenizer = new StringTokenizer(props.getProperty("inputData"));
    tokenizer.nextToken();
    trainFile = tokenizer.nextToken();
    trainFile = trainFile.substring(1, trainFile.length() - 1);
    testFile = tokenizer.nextToken();
    testFile = testFile.substring(1, testFile.length() - 1);

    // Classification or Regression ??
    byte[] schema = null;
    try {
        schema = readSchema(trainFile);
    } catch (IOException e) {
        e.printStackTrace();
    } catch (DatasetException e) {
        e.printStackTrace();
    }

    // Algorithm auxiliar configuration
    XMLConfiguration algConf = new XMLConfiguration();
    algConf.setRootElementName("algorithm");
    algConf.addProperty("population-size", 1000);
    algConf.addProperty("max-of-generations", Integer.parseInt(props.getProperty("Generations")));
    algConf.addProperty("creation-ratio", 10.0);
    algConf.addProperty("percentage-second-mutator", 10);
    algConf.addProperty("max-generations-without-improving-mean", 20);
    algConf.addProperty("max-generations-without-improving-best", 20);
    algConf.addProperty("fitness-difference", 0.0000001);
    algConf.addProperty("species[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies");
    algConf.addProperty("species.neural-net-type",
            "keel.Algorithms.Neural_Networks.NNEP_Clas.neuralnet.NeuralNetClassifier");
    if (props.getProperty("Transfer").equals("Product_Unit")) {
        algConf.addProperty("species.hidden-layer[@type]",
                "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpLayer");
        algConf.addProperty("species.hidden-layer[@biased]", false);
        algConf.addProperty("evaluator[@log-input-data]", true);
    } else {
        algConf.addProperty("species.hidden-layer[@type]",
                "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmLayer");
        algConf.addProperty("species.hidden-layer[@biased]", true);
    }
    int neurons = Integer.parseInt(props.getProperty("Hidden_nodes"));
    algConf.addProperty("species.hidden-layer.minimum-number-of-neurons",
            (neurons / 3) != 0 ? (neurons / 3) : 1);
    algConf.addProperty("species.hidden-layer.initial-maximum-number-of-neurons",
            (neurons / 2) != 0 ? (neurons / 2) : 1);
    algConf.addProperty("species.hidden-layer.maximum-number-of-neurons", neurons);
    algConf.addProperty("species.hidden-layer.initiator-of-links",
            "keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator");
    algConf.addProperty("species.hidden-layer.weight-range[@type]", "net.sf.jclec.util.range.Interval");
    algConf.addProperty("species.hidden-layer.weight-range[@closure]", "closed-closed");
    algConf.addProperty("species.hidden-layer.weight-range[@left]", -5.0);
    algConf.addProperty("species.hidden-layer.weight-range[@right]", 5.0);
    algConf.addProperty("species.output-layer[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearLayer");
    algConf.addProperty("species.output-layer[@biased]", true);
    algConf.addProperty("species.output-layer.initiator-of-links",
            "keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator");
    algConf.addProperty("species.output-layer.weight-range[@type]", "net.sf.jclec.util.range.Interval");
    algConf.addProperty("species.output-layer.weight-range[@closure]", "closed-closed");
    algConf.addProperty("species.output-layer.weight-range[@left]", -5.0);
    algConf.addProperty("species.output-layer.weight-range[@right]", 5.0);
    algConf.addProperty("evaluator[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Clas.problem.classification.softmax.SoftmaxClassificationProblemEvaluator");

    algConf.addProperty("evaluator[@normalize-data]", true);

    algConf.addProperty("evaluator.error-function",
            "keel.Algorithms.Neural_Networks.NNEP_Clas.problem.errorfunctions.LogisticErrorFunction");

    algConf.addProperty("evaluator.input-interval[@closure]", "closed-closed");

    if (props.getProperty("Transfer").equals("Product_Unit")) {
        algConf.addProperty("evaluator.input-interval[@left]", 1.0);
        algConf.addProperty("evaluator.input-interval[@right]", 2.0);
    } else {
        algConf.addProperty("evaluator.input-interval[@left]", 0.1);
        algConf.addProperty("evaluator.input-interval[@right]", 0.9);
    }

    algConf.addProperty("evaluator.output-interval[@closure]", "closed-closed");

    algConf.addProperty("evaluator.output-interval[@left]", 0.0);
    algConf.addProperty("evaluator.output-interval[@right]", 1.0);

    algConf.addProperty("provider[@type]", "keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator");
    algConf.addProperty("mutator1[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator");
    algConf.addProperty("mutator1.temperature-exponent[@value]", 1.0);
    algConf.addProperty("mutator1.significative-weigth[@value]", 0.0000001);
    algConf.addProperty("mutator1.neuron-ranges.added[@min]", 1);
    algConf.addProperty("mutator1.neuron-ranges.added[@max]", 2);
    algConf.addProperty("mutator1.neuron-ranges.deleted[@min]", 1);
    algConf.addProperty("mutator1.neuron-ranges.deleted[@max]", 2);
    algConf.addProperty("mutator1.links-ranges[@relative]", true);
    algConf.addProperty("mutator1.links-ranges.percentages[@hidden]", 30);
    algConf.addProperty("mutator1.links-ranges.percentages[@output]", 5);
    algConf.addProperty("mutator2[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSRMutator");
    algConf.addProperty("mutator2.temperature-exponent[@value]", 0.0);
    algConf.addProperty("mutator2.amplitude[@value]", 5.0);
    algConf.addProperty("mutator2.fitness-difference[@value]", 0.0000001);
    algConf.addProperty("mutator2.initial-alpha-values[@input]", 0.5);
    algConf.addProperty("mutator2.initial-alpha-values[@output]", 1.0);
    algConf.addProperty("rand-gen-factory[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnepFactory");
    algConf.addProperty("rand-gen-factory[@seed]", Integer.parseInt(props.getProperty("seed")));

    // Neural Net Algorithm
    algorithm = new CCRElitistNeuralNetAlgorithm();

    algorithm.configure(algConf);

    // Read data
    ProblemEvaluator evaluator = (ProblemEvaluator) algorithm.getEvaluator();

    evaluator.readData(schema, new KeelDataSet(trainFile), new KeelDataSet(testFile));

    ((NeuralNetIndividualSpecies) algorithm.getSpecies()).setNOfInputs(evaluator.getTrainData().getNofinputs());
    ((NeuralNetIndividualSpecies) algorithm.getSpecies())
            .setNOfOutputs(evaluator.getTrainData().getNofoutputs() - 1);

    // Read output files
    tokenizer = new StringTokenizer(props.getProperty("outputData"));
    String trainResultFile = tokenizer.nextToken();
    trainResultFile = trainResultFile.substring(1, trainResultFile.length() - 1);
    consoleReporter.setTrainResultFile(trainResultFile);
    String testResultFile = tokenizer.nextToken();
    testResultFile = testResultFile.substring(1, testResultFile.length() - 1);
    consoleReporter.setTestResultFile(testResultFile);
    String bestModelResultFile = tokenizer.nextToken();
    bestModelResultFile = bestModelResultFile.substring(1, bestModelResultFile.length() - 1);
    consoleReporter.setBestModelResultFile(bestModelResultFile);

    listeners.add(consoleReporter);
}

From source file:hepple.postag.POSTagger.java

/**
 * Reads one input file and creates the structure needed by the tagger
 * for input.// w w w . j  a  v  a2 s  .  c  om
 */
@SuppressWarnings("unused")
private static List<List<String>> readInput(String file) throws IOException {
    BufferedReader reader = null;

    try {
        reader = new BufferedReader(new FileReader(file));

        String line = reader.readLine();
        List<List<String>> result = new ArrayList<List<String>>();
        while (line != null) {
            StringTokenizer tokens = new StringTokenizer(line);
            List<String> sentence = new ArrayList<String>();
            while (tokens.hasMoreTokens())
                sentence.add(tokens.nextToken());
            result.add(sentence);
            line = reader.readLine();
        } //while(line != null)
        return result;
    } finally {
        IOUtils.closeQuietly(reader);
    }
}

From source file:keel.Algorithms.Neural_Networks.NNEP_Regr.KEELWrapperRegr.java

/**
 * <p>//  w ww  . j  a  va2  s.  c  om
 * Configure the execution of the algorithm.
 * </p>
 * @param jobFilename Name of the KEEL file with properties of the
 *                    execution
 */

@SuppressWarnings("unchecked")
private static void configureJob(String jobFilename) {

    Properties props = new Properties();

    try {
        InputStream paramsFile = new FileInputStream(jobFilename);
        props.load(paramsFile);
        paramsFile.close();
    } catch (IOException ioe) {
        ioe.printStackTrace();
        System.exit(0);
    }

    // Files training and test
    String trainFile;
    String testFile;
    StringTokenizer tokenizer = new StringTokenizer(props.getProperty("inputData"));
    tokenizer.nextToken();
    trainFile = tokenizer.nextToken();
    trainFile = trainFile.substring(1, trainFile.length() - 1);
    testFile = tokenizer.nextToken();
    testFile = testFile.substring(1, testFile.length() - 1);

    // Classification or Regression ??
    byte[] schema = null;
    try {
        schema = readSchema(trainFile);
    } catch (IOException e) {
        e.printStackTrace();
    } catch (DatasetException e) {
        e.printStackTrace();
    }

    // Algorithm auxiliar configuration
    XMLConfiguration algConf = new XMLConfiguration();
    algConf.setRootElementName("algorithm");
    algConf.addProperty("population-size", 1000);
    algConf.addProperty("max-of-generations", Integer.parseInt(props.getProperty("Generations")));
    algConf.addProperty("creation-ratio", 10.0);
    algConf.addProperty("percentage-second-mutator", 10);
    algConf.addProperty("max-generations-without-improving-mean", 20);
    algConf.addProperty("max-generations-without-improving-best", 20);
    algConf.addProperty("fitness-difference", 0.0000001);
    algConf.addProperty("species[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetIndividualSpecies");
    algConf.addProperty("species.neural-net-type",
            "keel.Algorithms.Neural_Networks.NNEP_Regr.neuralnet.NeuralNetRegressor");
    if (props.getProperty("Transfer").equals("Product_Unit")) {
        algConf.addProperty("species.hidden-layer[@type]",
                "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ExpLayer");
        algConf.addProperty("species.hidden-layer[@biased]", false);
        algConf.addProperty("evaluator[@log-input-data]", true);
    } else {
        algConf.addProperty("species.hidden-layer[@type]",
                "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.SigmLayer");
        algConf.addProperty("species.hidden-layer[@biased]", true);
    }
    int neurons = Integer.parseInt(props.getProperty("Hidden_nodes"));
    algConf.addProperty("species.hidden-layer.minimum-number-of-neurons",
            (neurons / 3) != 0 ? (neurons / 3) : 1);
    algConf.addProperty("species.hidden-layer.initial-maximum-number-of-neurons",
            (neurons / 2) != 0 ? (neurons / 2) : 1);
    algConf.addProperty("species.hidden-layer.maximum-number-of-neurons", neurons);
    algConf.addProperty("species.hidden-layer.initiator-of-links",
            "keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator");
    algConf.addProperty("species.hidden-layer.weight-range[@type]", "net.sf.jclec.util.range.Interval");
    algConf.addProperty("species.hidden-layer.weight-range[@closure]", "closed-closed");
    algConf.addProperty("species.hidden-layer.weight-range[@left]", -5.0);
    algConf.addProperty("species.hidden-layer.weight-range[@right]", 5.0);
    algConf.addProperty("species.output-layer[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinearLayer");
    algConf.addProperty("species.output-layer[@biased]", true);
    algConf.addProperty("species.output-layer.initiator-of-links",
            "keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator");
    algConf.addProperty("species.output-layer.weight-range[@type]", "net.sf.jclec.util.range.Interval");
    algConf.addProperty("species.output-layer.weight-range[@closure]", "closed-closed");
    algConf.addProperty("species.output-layer.weight-range[@left]", -5.0);
    algConf.addProperty("species.output-layer.weight-range[@right]", 5.0);

    algConf.addProperty("evaluator[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Regr.problem.regression.RegressionProblemEvaluator");

    algConf.addProperty("evaluator[@normalize-data]", true);

    algConf.addProperty("evaluator.error-function",
            "keel.Algorithms.Neural_Networks.NNEP_Regr.problem.errorfunctions.MSEErrorFunction");

    algConf.addProperty("evaluator.input-interval[@closure]", "closed-closed");
    if (props.getProperty("Transfer").equals("Product_Unit")) {
        algConf.addProperty("evaluator.input-interval[@left]", 1.0);
        algConf.addProperty("evaluator.input-interval[@right]", 2.0);
    } else {
        algConf.addProperty("evaluator.input-interval[@left]", 0.1);
        algConf.addProperty("evaluator.input-interval[@right]", 0.9);
    }

    algConf.addProperty("evaluator.output-interval[@closure]", "closed-closed");

    algConf.addProperty("evaluator.output-interval[@left]", 1.0);
    algConf.addProperty("evaluator.output-interval[@right]", 2.0);

    algConf.addProperty("provider[@type]", "keel.Algorithms.Neural_Networks.NNEP_Common.NeuralNetCreator");
    algConf.addProperty("mutator1[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.mutators.structural.StructuralMutator");
    algConf.addProperty("mutator1.temperature-exponent[@value]", 1.0);
    algConf.addProperty("mutator1.significative-weigth[@value]", 0.0000001);
    algConf.addProperty("mutator1.neuron-ranges.added[@min]", 1);
    algConf.addProperty("mutator1.neuron-ranges.added[@max]", 2);
    algConf.addProperty("mutator1.neuron-ranges.deleted[@min]", 1);
    algConf.addProperty("mutator1.neuron-ranges.deleted[@max]", 2);

    algConf.addProperty("mutator1.links-ranges[@relative]", false);
    algConf.addProperty("mutator1.links-ranges.added[@min]", 1);
    algConf.addProperty("mutator1.links-ranges.added[@max]", 6);
    algConf.addProperty("mutator1.links-ranges.deleted[@min]", 1);
    algConf.addProperty("mutator1.links-ranges.deleted[@max]", 6);
    algConf.addProperty("mutator2[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.mutators.parametric.ParametricSAMutator");

    algConf.addProperty("mutator2.temperature-exponent[@value]", 0.0);
    algConf.addProperty("mutator2.amplitude[@value]", 5.0);
    algConf.addProperty("mutator2.fitness-difference[@value]", 0.0000001);
    algConf.addProperty("mutator2.initial-alpha-values[@input]", 0.5);
    algConf.addProperty("mutator2.initial-alpha-values[@output]", 1.0);
    algConf.addProperty("rand-gen-factory[@type]",
            "keel.Algorithms.Neural_Networks.NNEP_Common.util.random.RanNnepFactory");
    algConf.addProperty("rand-gen-factory[@seed]", Integer.parseInt(props.getProperty("seed")));

    // Neural Net Algorithm
    algorithm = new NeuralNetAlgorithm<NeuralNetIndividual>();

    algorithm.configure(algConf);

    // Read data
    ProblemEvaluator evaluator = (ProblemEvaluator) algorithm.getEvaluator();
    evaluator.readData(schema, new KeelDataSet(trainFile), new KeelDataSet(testFile));
    ((NeuralNetIndividualSpecies) algorithm.getSpecies()).setNOfInputs(evaluator.getTrainData().getNofinputs());
    ((NeuralNetIndividualSpecies) algorithm.getSpecies())
            .setNOfOutputs(evaluator.getTrainData().getNofoutputs());

    // Read output files
    tokenizer = new StringTokenizer(props.getProperty("outputData"));
    String trainResultFile = tokenizer.nextToken();
    trainResultFile = trainResultFile.substring(1, trainResultFile.length() - 1);
    consoleReporter.setTrainResultFile(trainResultFile);
    String testResultFile = tokenizer.nextToken();
    testResultFile = testResultFile.substring(1, testResultFile.length() - 1);
    consoleReporter.setTestResultFile(testResultFile);
    String bestModelResultFile = tokenizer.nextToken();
    bestModelResultFile = bestModelResultFile.substring(1, bestModelResultFile.length() - 1);
    consoleReporter.setBestModelResultFile(bestModelResultFile);

    listeners.add(consoleReporter);
}

From source file:com.liusoft.dlog4j.search.SearchProxy.java

/**
 * /*  w  ww .  ja  va2  s.  c o  m*/
 * @param obj
 * @param field
 * @param value
 * @throws IllegalAccessException
 * @throws InvocationTargetException
 * @throws NoSuchMethodException
 * @throws IntrospectionException 
 * @throws InstantiationException 
 */
private static void setNestedProperty(Object obj, String field, Object value) throws IllegalAccessException,
        InvocationTargetException, NoSuchMethodException, IntrospectionException, InstantiationException {
    StringTokenizer st = new StringTokenizer(field, ".");
    Class nodeClass = obj.getClass();
    StringBuffer tmp_prop = new StringBuffer();
    while (st.hasMoreElements()) {
        String f = st.nextToken();
        if (tmp_prop.length() > 0)
            tmp_prop.append('.');
        tmp_prop.append(f);
        PropertyDescriptor[] props = Introspector.getBeanInfo(nodeClass).getPropertyDescriptors();
        for (int i = 0; i < props.length; i++) {
            if (props[i].getName().equals(f)) {
                if (PropertyUtils.getNestedProperty(obj, tmp_prop.toString()) == null) {
                    nodeClass = props[i].getPropertyType();
                    PropertyUtils.setNestedProperty(obj, f, nodeClass.newInstance());
                }
                continue;
            }
        }
    }
    PropertyUtils.setNestedProperty(obj, field, value);
}

From source file:edu.stanford.muse.index.NEROld.java

public static void readLocationsFreebase() throws IOException {
    InputStream is = new GZIPInputStream(NER.class.getClassLoader().getResourceAsStream("locations.gz"));
    LineNumberReader lnr = new LineNumberReader(new InputStreamReader(is, "UTF-8"));
    while (true) {
        String line = lnr.readLine();
        if (line == null)
            break;
        StringTokenizer st = new StringTokenizer(line, "\t");
        if (st.countTokens() == 3) {
            String locationName = st.nextToken();
            String canonicalName = locationName.toLowerCase();
            String lat = st.nextToken();
            String longi = st.nextToken();
            locations.put(canonicalName, new LocationInfo(locationName, lat, longi));
        }/*from www . j a va 2 s  .c  om*/
    }
}