List of usage examples for java.util Random nextDouble
public double nextDouble()
From source file:edu.jhuapl.graphs.jfreechart.TimeSeriesEffectsTest.java
private static double getNextRandomValue(Random r) { // we have a 90% chance of something in 0-10, and a 10% chance of something in 10-20 if (r.nextDouble() <= .9) { return 10 * r.nextDouble(); } else {// w ww .j a v a 2s . c o m return 10 + 10 * r.nextDouble(); } }
From source file:play.sax.main.Main.java
private static TimeSeries generateRandomTimeSeries(final int noOfEntries) { final TimeSeries series = new TimeSeries(); RandomDataGenerator randomData = new RandomDataGenerator(); Random rand = new Random(); for (int i = 0; i < noOfEntries; i++) { final Long time = randomData.nextLong(0, 20000); final Double value = DATA_LOWER_BOUND + DATA_RANGE * rand.nextDouble(); final TimeSeriesEntry entry = new TimeSeriesEntry(time, value); series.addTimeSeriesEntry(entry); }//ww w .j ava2s . c o m return series; }
From source file:de.terministic.serein.core.genome.DoubleGenome.java
static public DoubleGenome createRandomDoubleGenome(int size, Random random) { List<Double> genes = new ArrayList<>(); for (int i = 0; i < size; i++) { genes.add(random.nextDouble()); }/*from w w w .java2s . co m*/ return new DoubleGenome(genes); }
From source file:org.deeplearning4j.examples.multigpu.rnn.LSTMCharModellingExample.java
/** Given a probability distribution over discrete classes, sample from the distribution * and return the generated class index. * @param distribution Probability distribution over classes. Must sum to 1.0 *///from ww w.j a va 2 s .c o m public static int sampleFromDistribution(double[] distribution, Random rng) { double d = rng.nextDouble(); double sum = 0.0; for (int i = 0; i < distribution.length; i++) { sum += distribution[i]; if (d <= sum) return i; } //Should never happen if distribution is a valid probability distribution throw new IllegalArgumentException("Distribution is invalid? d=" + d + ", sum=" + sum); }
From source file:es.uvigo.darwin.jmodeltest.io.RFHistogram.java
public static JFreeChart buildRandomHistogram() { Random generator = new Random(); double[] value = new double[100]; for (int i = 1; i < 100; i++) { value[i] = generator.nextDouble(); }//from ww w. j a v a2 s. com int number = 10; String plotTitle = "Histogram"; String xaxis = "number"; String yaxis = "value"; JFreeChart chart = buildHistogram(value, number, plotTitle, xaxis, yaxis); return chart; }
From source file:org.meteoinfo.math.RandomUtil.java
/** * Get random value/*from w ww. jav a 2 s.c o m*/ * * @return Random value */ public static double rand() { Random r = new Random(); return r.nextDouble(); }
From source file:cz.cuni.mff.d3s.spl.example.newton.app.Main.java
private static double[] generateCoefficients(Random random) { int n = random.nextInt(MAX_POLYNOM_DEGREE) + 1; double[] result = new double[n]; for (int i = 0; i < n; i++) { double coeff = random.nextDouble() - 0.5; result[i] = coeff * COEFFICIENT_MULTIPLIER; }//from www . j ava2 s.c o m return result; }
From source file:com.oculusinfo.ml.spark.unsupervised.TestKMeans.java
public static void genTestData(int k) { PrintWriter writer;// ww w.ja v a2 s . c om try { writer = new PrintWriter("test.txt", "UTF-8"); // each class size is equal int classSize = 1000000 / k; double stdDev = 30.0; // generate k classes of data points using a normal distribution with random means and fixed std deviation for (int i = 0; i < k; i++) { Random rnd = new Random(); double meanX = rnd.nextDouble() * 400.0; double meanY = rnd.nextDouble() * 400.0; // randomly generate a dataset of x, y points for (int j = 0; j < classSize; j++) { double x = rnd.nextGaussian() * stdDev + meanX; double y = rnd.nextGaussian() * stdDev + meanY; writer.println(x + "," + y); } } writer.close(); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (UnsupportedEncodingException e) { // TODO Auto-generated catch block e.printStackTrace(); } }
From source file:ubic.BAMSandAllen.FocusedAnalysis.TestConnectivityRobustness.java
public static void main2() throws Exception { Direction direction = AnalyzeBAMSandAllenGenes.Direction.INCOMING; boolean makeVirtualRegions = true; boolean squareMatrix = false; boolean logDistance = true; boolean slow = false; RegressMatrix regressType = RegressMatrix.BOTH; boolean useVirtual = true; boolean removeNonExp = true; boolean run = false; List<Double> resultCor = new LinkedList<Double>(); List<Double> resultSig = new LinkedList<Double>(); int seed = 1; int splits = 2; for (int i = 0; i < splits; i++) { ConnectivityAndAllenExpressionMatrixPair pair = ExpressionMatrixPairFactory.connectivityPartial( direction, slow, regressType, useVirtual, removeNonExp, logDistance, squareMatrix, run); pair.removeZeroConnectionRows(); // String filename = "/grp/java/workspace/BAMSandAllen/data/rankedGenes/near final ammon/"; // filename += "LOOGenesInOrder.in.partialcon.ammon.txt.452.0.01985.topGenes.txt"; // //filename += "LOOGenesInOrder.out.partialcon.ammon.txt.374.0.016424.topGenes.txt"; // RankedGeneListLoader aLook = new RankedGeneListLoader( filename ); // pair.setMatrixBDataRows( aLook.getLines() ); // remove rows List<String> connectionRows = pair.getMatrixA().getRowNames(); List<String> removeRows = new LinkedList<String>(); Random r = new Random(seed); for (String region : connectionRows) { int remove = (int) (r.nextDouble() * splits); if (remove != i) { removeRows.add(region);/*from www .j av a 2 s. com*/ } } pair.removeMatrixADataRows(removeRows); pair.printConnectionInfo(); pair.printDimensions(); pair.run(); double correlation = pair.getCorrelation(); log.info(correlation); resultCor.add(correlation); resultSig.add(pair.test(1000)); } log.info("Correlations:" + resultCor); log.info("Pvalues:" + resultSig); }
From source file:edu.umich.eecs.rtcl.lp_doctor.utilities.MathTools.java
public static LatLng getFakeLocation(LatLng currentLoc, int trackLevel) { double radius = getRadius(trackLevel); double privacyLevel = Math.log(4); Random rand = new Random();//need good source of randomness double theta = rand.nextDouble() * 360; double p = rand.nextDouble(); double eps = privacyLevel / radius; //some thing around 1000 m double lam = LambertW.branchNeg1((p - 1) / Math.exp(1)); double r = (-1 / eps) * (lam + 1); return Util.calculateDerivedPosition(currentLoc, r, theta); }