Example usage for java.util HashMap get

List of usage examples for java.util HashMap get

Introduction

In this page you can find the example usage for java.util HashMap get.

Prototype

public V get(Object key) 

Source Link

Document

Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.

Usage

From source file:com.example.bigtable.simplecli.HBaseCLI.java

/**
 * The main method for the CLI. This method takes the command line
 * arguments and runs the appropriate commands.
 *///ww w  .  j  a va 2 s.  c o m
public static void main(String[] args) {
    // We use Apache commons-cli to check for a help option.
    Options options = new Options();
    Option help = new Option("help", "print this message");
    options.addOption(help);

    // create the parser
    CommandLineParser parser = new BasicParser();
    CommandLine line = null;
    try {
        // parse the command line arguments
        line = parser.parse(options, args);
    } catch (ParseException exp) {
        // oops, something went wrong
        System.err.println(exp.getMessage());
        usage();
        System.exit(1);
    }

    // Create a list of commands that are supported. Each
    // command defines a run method and some methods for
    // printing help.
    // See the definition of each command below.
    HashMap<String, Command> commands = new HashMap<String, Command>();
    commands.put("create", new CreateCommand("create"));
    commands.put("scan", new ScanCommand("scan"));
    commands.put("get", new GetCommand("get"));
    commands.put("put", new PutCommand("put"));
    commands.put("list", new ListCommand("list"));

    Command command = null;
    List<String> argsList = Arrays.asList(args);
    if (argsList.size() > 0) {
        command = commands.get(argsList.get(0));
    }

    // Check for the help option and if it's there
    // display the appropriate help.
    if (line.hasOption("help")) {
        // If there is a command listed (e.g. create -help)
        // then show the help for that command
        if (command == null) {
            help(commands.values());
        } else {
            help(command);
        }
        System.exit(0);
    } else if (command == null) {
        // No valid command was given so print the usage.
        usage();
        System.exit(0);
    }

    try {
        Connection connection = ConnectionFactory.createConnection();

        try {
            try {
                // Run the command with the arguments after the command name.
                command.run(connection, argsList.subList(1, argsList.size()));
            } catch (InvalidArgsException e) {
                System.out.println("ERROR: Invalid arguments");
                usage(command);
                System.exit(0);
            }
        } finally {
            // Make sure the connection is closed even if
            // an exception occurs.
            connection.close();
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
}

From source file:ch.epfl.lsir.xin.test.SVDPPTest.java

/**
 * @param args/* w w  w  . ja v  a 2  s.  c  om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SVDPP");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SVDPlusPlus.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            if (testRatings.get(i).getValue() < 5)
                continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a SVD++ recommendation model.");
        logger.flush();
        SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.ItemBasedCFTest.java

/**
 * @param args/*from ww w.  j  a v a2s .c o m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }

    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateItemsMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());
        logger.println("Initialize a item based collaborative filtering recommendation model.");
        ItemBasedCF algo = new ItemBasedCF(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);

        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                //               results.put(i, rec);
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.append("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc + "\n");
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    System.out.println("similarity: " + config.getString("SIMILARITY"));
    //MAE: 0.7227232762922241 RMSE: 0.9225576790122603 (MovieLens 100K, shrinkage 2500, neighbor size 40, PCC)
    //MAE: 0.7250636319353241 RMSE: 0.9242305485411567 (MovieLens 100K, shrinkage 25, neighbor size 40, PCC)
    //MAE: 0.7477213243604459 RMSE: 0.9512195004171138 (MovieLens 100K, shrinkage 2500, neighbor size 40, COSINE)

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:com.oltpbenchmark.multitenancy.MuTeBench.java

/**
 * @param args//from  w  w w . j a va  2s.  c  o m
 * @throws Exception
 */
public static void main(String[] args) throws Exception {
    String duration = null;
    String scenarioFile = null;

    // -------------------------------------------------------------------
    // INITIALIZE LOGGING
    // -------------------------------------------------------------------
    String log4jPath = System.getProperty("log4j.configuration");
    if (log4jPath != null) {
        org.apache.log4j.PropertyConfigurator.configure(log4jPath);
    } else {
        throw new RuntimeException("Missing log4j.properties file");
    }

    // -------------------------------------------------------------------
    // PARSE COMMAND LINE PARAMETERS
    // -------------------------------------------------------------------
    CommandLineParser parser = new PosixParser();
    XMLConfiguration pluginConfig = null;
    try {
        pluginConfig = new XMLConfiguration("config/plugin.xml");
    } catch (ConfigurationException e1) {
        LOG.info("Plugin configuration file config/plugin.xml is missing");
        e1.printStackTrace();
    }
    pluginConfig.setExpressionEngine(new XPathExpressionEngine());
    Options options = new Options();
    options.addOption("s", "scenario", true, "[required] Workload scenario file");
    options.addOption("a", "analysis-buckets", true, "sampling buckets for result aggregation");
    options.addOption("r", "runtime", true,
            "maximum runtime  (no events will be started after finishing runtime)");
    options.addOption("v", "verbose", false, "Display Messages");
    options.addOption("g", "gui", false, "Show controlling GUI");
    options.addOption("h", "help", false, "Print this help");
    options.addOption("o", "output", true, "Output file (default System.out)");
    options.addOption("b", "baseline", true, "Output files of previous baseline run");
    options.addOption(null, "histograms", false, "Print txn histograms");
    options.addOption("d", "dialects-export", true, "Export benchmark SQL to a dialects file");

    // parse the command line arguments
    CommandLine argsLine = parser.parse(options, args);
    if (argsLine.hasOption("h")) {
        printUsage(options);
        return;
    } else if (!argsLine.hasOption("scenario")) {
        INIT_LOG.fatal("Missing scenario description file");
        System.exit(-1);
    } else
        scenarioFile = argsLine.getOptionValue("scenario");
    if (argsLine.hasOption("r"))
        duration = argsLine.getOptionValue("r");
    if (argsLine.hasOption("runtime"))
        duration = argsLine.getOptionValue("runtime");

    // -------------------------------------------------------------------
    // CREATE TENANT SCHEDULE
    // -------------------------------------------------------------------
    INIT_LOG.info("Create schedule");
    Schedule schedule = new Schedule(duration, scenarioFile);
    HashMap<Integer, ScheduleEvents> tenantEvents = schedule.getTenantEvents();
    ArrayList<Integer> tenantList = schedule.getTenantList();

    List<BenchmarkModule> benchList = new ArrayList<BenchmarkModule>();

    for (int tenInd = 0; tenInd < tenantList.size(); tenInd++) {
        int tenantID = tenantList.get(tenInd);
        for (int tenEvent = 0; tenEvent < tenantEvents.get(tenantID).size(); tenEvent++) {

            BenchmarkSettings benchmarkSettings = (BenchmarkSettings) tenantEvents.get(tenantID)
                    .getBenchmarkSettings(tenEvent);

            // update benchmark Settings
            benchmarkSettings.setTenantID(tenantID);

            // -------------------------------------------------------------------
            // GET PLUGIN LIST
            // -------------------------------------------------------------------
            String plugins = benchmarkSettings.getBenchmark();
            String[] pluginList = plugins.split(",");

            String configFile = benchmarkSettings.getConfigFile();
            XMLConfiguration xmlConfig = new XMLConfiguration(configFile);
            xmlConfig.setExpressionEngine(new XPathExpressionEngine());
            int lastTxnId = 0;

            for (String plugin : pluginList) {

                // ----------------------------------------------------------------
                // WORKLOAD CONFIGURATION
                // ----------------------------------------------------------------

                String pluginTest = "";

                pluginTest = "[@bench='" + plugin + "']";

                WorkloadConfiguration wrkld = new WorkloadConfiguration();
                wrkld.setTenantId(tenantID);
                wrkld.setBenchmarkName(setTenantIDinString(plugin, tenantID));
                wrkld.setXmlConfig(xmlConfig);
                wrkld.setDBType(DatabaseType.get(setTenantIDinString(xmlConfig.getString("dbtype"), tenantID)));
                wrkld.setDBDriver(setTenantIDinString(xmlConfig.getString("driver"), tenantID));
                wrkld.setDBConnection(setTenantIDinString(xmlConfig.getString("DBUrl"), tenantID));
                wrkld.setDBName(setTenantIDinString(xmlConfig.getString("DBName"), tenantID));
                wrkld.setDBUsername(setTenantIDinString(xmlConfig.getString("username"), tenantID));
                wrkld.setDBPassword(setTenantIDinString(xmlConfig.getString("password"), tenantID));
                String terminalString = setTenantIDinString(xmlConfig.getString("terminals[not(@bench)]", "0"),
                        tenantID);
                int terminals = Integer.parseInt(xmlConfig.getString("terminals" + pluginTest, terminalString));
                wrkld.setTerminals(terminals);
                int taSize = Integer.parseInt(xmlConfig.getString("taSize", "1"));
                if (taSize < 0)
                    INIT_LOG.fatal("taSize must not be negative!");
                wrkld.setTaSize(taSize);
                wrkld.setProprietaryTaSyntax(xmlConfig.getBoolean("proprietaryTaSyntax", false));
                wrkld.setIsolationMode(setTenantIDinString(
                        xmlConfig.getString("isolation", "TRANSACTION_SERIALIZABLE"), tenantID));
                wrkld.setScaleFactor(Double
                        .parseDouble(setTenantIDinString(xmlConfig.getString("scalefactor", "1.0"), tenantID)));
                wrkld.setRecordAbortMessages(xmlConfig.getBoolean("recordabortmessages", false));

                int size = xmlConfig.configurationsAt("/works/work").size();

                for (int i = 1; i < size + 1; i++) {
                    SubnodeConfiguration work = xmlConfig.configurationAt("works/work[" + i + "]");
                    List<String> weight_strings;

                    // use a workaround if there multiple workloads or
                    // single
                    // attributed workload
                    if (pluginList.length > 1 || work.containsKey("weights[@bench]")) {
                        weight_strings = get_weights(plugin, work);
                    } else {
                        weight_strings = work.getList("weights[not(@bench)]");
                    }
                    int rate = 1;
                    boolean rateLimited = true;
                    boolean disabled = false;

                    // can be "disabled", "unlimited" or a number
                    String rate_string;
                    rate_string = setTenantIDinString(work.getString("rate[not(@bench)]", ""), tenantID);
                    rate_string = setTenantIDinString(work.getString("rate" + pluginTest, rate_string),
                            tenantID);
                    if (rate_string.equals(RATE_DISABLED)) {
                        disabled = true;
                    } else if (rate_string.equals(RATE_UNLIMITED)) {
                        rateLimited = false;
                    } else if (rate_string.isEmpty()) {
                        LOG.fatal(String.format(
                                "Tenant " + tenantID + ": Please specify the rate for phase %d and workload %s",
                                i, plugin));
                        System.exit(-1);
                    } else {
                        try {
                            rate = Integer.parseInt(rate_string);
                            if (rate < 1) {
                                LOG.fatal("Tenant " + tenantID
                                        + ": Rate limit must be at least 1. Use unlimited or disabled values instead.");
                                System.exit(-1);
                            }
                        } catch (NumberFormatException e) {
                            LOG.fatal(String.format(
                                    "Tenant " + tenantID + ": Rate string must be '%s', '%s' or a number",
                                    RATE_DISABLED, RATE_UNLIMITED));
                            System.exit(-1);
                        }
                    }
                    Phase.Arrival arrival = Phase.Arrival.REGULAR;
                    String arrive = setTenantIDinString(work.getString("@arrival", "regular"), tenantID);
                    if (arrive.toUpperCase().equals("POISSON"))
                        arrival = Phase.Arrival.POISSON;

                    int activeTerminals;
                    activeTerminals = Integer.parseInt(setTenantIDinString(
                            work.getString("active_terminals[not(@bench)]", String.valueOf(terminals)),
                            tenantID));
                    activeTerminals = Integer.parseInt(setTenantIDinString(
                            work.getString("active_terminals" + pluginTest, String.valueOf(activeTerminals)),
                            tenantID));
                    if (activeTerminals > terminals) {
                        LOG.fatal("Tenant " + tenantID + ": Configuration error in work " + i
                                + ": number of active terminals" + ""
                                + "is bigger than the total number of terminals");
                        System.exit(-1);
                    }
                    wrkld.addWork(Integer.parseInt(setTenantIDinString(work.getString("/time"), tenantID)),
                            rate, weight_strings, rateLimited, disabled, activeTerminals, arrival);
                } // FOR

                int numTxnTypes = xmlConfig
                        .configurationsAt("transactiontypes" + pluginTest + "/transactiontype").size();
                if (numTxnTypes == 0 && pluginList.length == 1) {
                    // if it is a single workload run, <transactiontypes />
                    // w/o attribute is used
                    pluginTest = "[not(@bench)]";
                    numTxnTypes = xmlConfig
                            .configurationsAt("transactiontypes" + pluginTest + "/transactiontype").size();
                }
                wrkld.setNumTxnTypes(numTxnTypes);

                // CHECKING INPUT PHASES
                int j = 0;
                for (Phase p : wrkld.getAllPhases()) {
                    j++;
                    if (p.getWeightCount() != wrkld.getNumTxnTypes()) {
                        LOG.fatal(String.format("Tenant " + tenantID
                                + ": Configuration files is inconsistent, phase %d contains %d weights but you defined %d transaction types",
                                j, p.getWeightCount(), wrkld.getNumTxnTypes()));
                        System.exit(-1);
                    }
                } // FOR

                // Generate the dialect map
                wrkld.init();

                assert (wrkld.getNumTxnTypes() >= 0);
                assert (xmlConfig != null);

                // ----------------------------------------------------------------
                // BENCHMARK MODULE
                // ----------------------------------------------------------------

                String classname = pluginConfig.getString("/plugin[@name='" + plugin + "']");

                if (classname == null) {
                    throw new ParseException("Plugin " + plugin + " is undefined in config/plugin.xml");
                }
                BenchmarkModule bench = ClassUtil.newInstance(classname, new Object[] { wrkld },
                        new Class<?>[] { WorkloadConfiguration.class });
                assert (benchList.get(0) != null);

                Map<String, Object> initDebug = new ListOrderedMap<String, Object>();
                initDebug.put("Benchmark", String.format("%s {%s}", plugin.toUpperCase(), classname));
                initDebug.put("Configuration", configFile);
                initDebug.put("Type", wrkld.getDBType());
                initDebug.put("Driver", wrkld.getDBDriver());
                initDebug.put("URL", wrkld.getDBConnection());
                initDebug.put("Isolation", setTenantIDinString(
                        xmlConfig.getString("isolation", "TRANSACTION_SERIALIZABLE [DEFAULT]"), tenantID));
                initDebug.put("Scale Factor", wrkld.getScaleFactor());
                INIT_LOG.info(SINGLE_LINE + "\n\n" + StringUtil.formatMaps(initDebug));
                INIT_LOG.info(SINGLE_LINE);

                // Load TransactionTypes
                List<TransactionType> ttypes = new ArrayList<TransactionType>();

                // Always add an INVALID type for Carlo
                ttypes.add(TransactionType.INVALID);
                int txnIdOffset = lastTxnId;
                for (int i = 1; i < wrkld.getNumTxnTypes() + 1; i++) {
                    String key = "transactiontypes" + pluginTest + "/transactiontype[" + i + "]";
                    String txnName = setTenantIDinString(xmlConfig.getString(key + "/name"), tenantID);
                    int txnId = i + 1;
                    if (xmlConfig.containsKey(key + "/id")) {
                        txnId = Integer
                                .parseInt(setTenantIDinString(xmlConfig.getString(key + "/id"), tenantID));
                    }
                    ttypes.add(bench.initTransactionType(txnName, txnId + txnIdOffset));
                    lastTxnId = i;
                } // FOR
                TransactionTypes tt = new TransactionTypes(ttypes);
                wrkld.setTransTypes(tt);
                if (benchmarkSettings.getBenchmarkSlaFile() != null)
                    wrkld.setSlaFromFile(benchmarkSettings.getBenchmarkSlaFile());
                LOG.debug("Tenant " + tenantID + ": Using the following transaction types: " + tt);

                bench.setTenantOffset(tenantEvents.get(tenantID).getTime(tenEvent));
                bench.setTenantID(tenantID);
                bench.setBenchmarkSettings(benchmarkSettings);
                benchList.add(bench);
            }
        }
    }
    // create result collector
    ResultCollector rCollector = new ResultCollector(tenantList);

    // execute benchmarks in parallel
    ArrayList<Thread> benchThreads = new ArrayList<Thread>();
    for (BenchmarkModule benchmark : benchList) {
        BenchmarkExecutor benchThread = new BenchmarkExecutor(benchmark, argsLine);
        Thread t = new Thread(benchThread);
        t.start();
        benchThreads.add(t);
        benchmark.getWorkloadConfiguration().setrCollector(rCollector);
    }

    // waiting for completion of all benchmarks
    for (Thread t : benchThreads) {
        t.join();
    }

    // print statistics
    int analysisBuckets = -1;
    if (argsLine.hasOption("analysis-buckets"))
        analysisBuckets = Integer.parseInt(argsLine.getOptionValue("analysis-buckets"));
    String output = null;
    if (argsLine.hasOption("o"))
        output = argsLine.getOptionValue("o");
    String baseline = null;
    if (argsLine.hasOption("b"))
        baseline = argsLine.getOptionValue("b");

    rCollector.printStatistics(output, analysisBuckets, argsLine.hasOption("histograms"), baseline);

    // create GUI
    if (argsLine.hasOption("g") && (!rCollector.getAllResults().isEmpty())) {
        try {
            Gui gui = new Gui(Integer.parseInt(argsLine.getOptionValue("analysis-buckets", "10")), rCollector,
                    output);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java

/**
 * @param args/*from  www.j a  v  a 2s. com*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//BiasedMF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//biasedMF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a biased matrix factorization recommendation model.");
        logger.flush();
        BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ch.epfl.lsir.xin.test.UserBasedCFTest.java

/**
 * @param args//w  w  w  .  j a v  a2s  .c om
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//UserBasedCF");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//UserBasedCF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        trainRatingMatrix.calculateUsersMean();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        logger.println("Initialize a user based collaborative filtering recommendation model.");
        UserBasedCF algo = new UserBasedCF(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();//if read local model, no need to build the model
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);

            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        logger.flush();
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < testRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
                //               for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() )
                //               {
                //                  System.out.print( entry.getKey() + "(" + entry.getValue() + ") , ");
                //               }
                //               System.out.println();
                //               for( int j = 0 ; j < rec.size() ; j++ )
                //               {
                //                  System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() +
                //                        ") , ");
                //               }
                //               System.out.println("**********");
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);
    // MovieLens100k
    //MAE: 0.7343907480119425 RMSE: 0.9405808357192891 (MovieLens 100K, shrinkage 25, neighbor size 60, PCC)
    //MAE: 0.7522376630596646 RMSE: 0.9520931265724659 (MovieLens 100K, no shrinkage , neighbor size 40, COSINE)
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();

}

From source file:ch.epfl.lsir.xin.test.MFTest.java

/**
 * @param args//from ww w  .j av  a2 s.  c o m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//MF");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//MF.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            //            if( testRatings.get(i).getValue() < 5 )
            //               continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a matrix factorization based recommendation model.");
        logger.flush();
        MatrixFactorization algo = new MatrixFactorization(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
                //               for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() )
                //               {
                //                  System.out.print( entry.getKey() + "(" + entry.getValue() + ") , ");
                //               }
                //               System.out.println();
                //               for( int j = 0 ; j < rec.size() ; j++ )
                //               {
                //                  System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() +
                //                        ") , ");
                //               }
                //               System.out.println("**********");
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix,
                    trainRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();

}

From source file:ch.epfl.lsir.xin.test.SocialRegTest.java

/**
 * @param args//from   w ww .  j a v  a  2s  . c  o m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SocialReg");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SocialReg.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt");
    loader.readSimple();
    //read social information
    loader.readRelation(".//data//Epinions-trust.txt");
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping();
        HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping();
        //         for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ )
        //         {
        //            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        //         }
        //         for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ )
        //         {
        //            itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i);
        //         }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a social regularization recommendation model.");
        logger.flush();
        SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        //         if( algo.getTopN() > 0 )
        //         {
        //            HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>();
        //            for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ )
        //            {
        //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
        //               results.put(i, rec);
        //            }
        //            RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix);
        //            precision = generator.getPrecisionN();
        //            totalPrecision = totalPrecision + precision;
        //            recall = generator.getRecallN();
        //            totalRecall = totalRecall + recall;
        //            map = generator.getMAPN();
        //            totalMAP = totalMAP + map;
        //            ndcg = generator.getNDCGN();
        //            totalNDCG = totalNDCG + ndcg;
        //            mrr = generator.getMRRN();
        //            totalMRR = totalMRR + mrr;
        //            auc = generator.getAUC();
        //            totalAUC = totalAUC + auc;
        //            System.out.println("Folder --- precision: " + precision + " recall: " + 
        //            recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        //            logger.println("Folder --- precision: " + precision + " recall: " + 
        //                  recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + 
        //                  mrr + " auc: " + auc);
        //         }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:ms1quant.MS1Quant.java

/**
 * @param args the command line arguments MS1Quant parameterfile
 *//*w w w.j av  a2 s .c  o m*/
public static void main(String[] args) throws Exception {

    BufferedReader reader = null;
    try {
        System.out.println(
                "=================================================================================================");
        System.out.println("Umpire MS1 quantification and feature detection analysis (version: "
                + UmpireInfo.GetInstance().Version + ")");
        if (args.length < 3 || !args[1].startsWith("-mode")) {
            System.out
                    .println("command : java -jar -Xmx10G MS1Quant.jar ms1quant.params -mode[1 or 2] [Option]");
            System.out.println("\n-mode");
            System.out.println("\t1:Single file mode--> mzXML_file PepXML_file");
            System.out.println("\t\tEx: -mode1 file1.mzXML file1.pep.xml");
            System.out.println(
                    "\t2:Folder mode--> mzXML_Folder PepXML_Folder, all generated csv tables will be merged into a single csv file");
            System.out.println("\t\tEx: -mode2 /data/mzxml/ /data/pepxml/");
            System.out.println("\nOptions");
            System.out.println(
                    "\t-C\tNo of concurrent files to be processed (only for folder mode), Ex. -C5, default:1");
            System.out.println("\t-p\tMinimum probability, Ex. -p0.9, default:0.9");
            System.out.println("\t-ID\tDetect identified feature only");
            System.out.println("\t-O\toutput folder, Ex. -O/data/");
            return;
        }
        ConsoleLogger consoleLogger = new ConsoleLogger();
        consoleLogger.SetConsoleLogger(Level.DEBUG);
        consoleLogger.SetFileLogger(Level.DEBUG, FilenameUtils.getFullPath(args[0]) + "ms1quant_debug.log");
        Logger logger = Logger.getRootLogger();
        logger.debug("Command: " + Arrays.toString(args));
        logger.info("MS1Quant version: " + UmpireInfo.GetInstance().Version);

        String parameterfile = args[0];
        logger.info("Parameter file: " + parameterfile);
        File paramfile = new File(parameterfile);
        if (!paramfile.exists()) {
            logger.error("Parameter file " + paramfile.getAbsolutePath()
                    + " cannot be found. The program will exit.");
        }

        reader = new BufferedReader(new FileReader(paramfile.getAbsolutePath()));
        String line = "";
        InstrumentParameter param = new InstrumentParameter(InstrumentParameter.InstrumentType.TOF5600);
        int NoCPUs = 2;
        int NoFile = 1;
        param.DetermineBGByID = false;
        param.EstimateBG = true;

        //<editor-fold defaultstate="collapsed" desc="Read parameter file">
        while ((line = reader.readLine()) != null) {
            if (!"".equals(line) && !line.startsWith("#")) {
                logger.info(line);
                //System.out.println(line);
                if (line.split("=").length < 2) {
                    continue;
                }
                if (line.split("=").length < 2) {
                    continue;
                }
                String type = line.split("=")[0].trim();
                if (type.startsWith("para.")) {
                    type = type.replace("para.", "SE.");
                }
                String value = line.split("=")[1].trim();
                switch (type) {
                case "Thread": {
                    NoCPUs = Integer.parseInt(value);
                    break;
                }
                //<editor-fold defaultstate="collapsed" desc="instrument parameters">

                case "SE.MS1PPM": {
                    param.MS1PPM = Float.parseFloat(value);
                    break;
                }
                case "SE.MS2PPM": {
                    param.MS2PPM = Float.parseFloat(value);
                    break;
                }
                case "SE.SN": {
                    param.SNThreshold = Float.parseFloat(value);
                    break;
                }
                case "SE.MS2SN": {
                    param.MS2SNThreshold = Float.parseFloat(value);
                    break;
                }
                case "SE.MinMSIntensity": {
                    param.MinMSIntensity = Float.parseFloat(value);
                    break;
                }
                case "SE.MinMSMSIntensity": {
                    param.MinMSMSIntensity = Float.parseFloat(value);
                    break;
                }
                case "SE.MinRTRange": {
                    param.MinRTRange = Float.parseFloat(value);
                    break;
                }
                case "SE.MaxNoPeakCluster": {
                    param.MaxNoPeakCluster = Integer.parseInt(value);
                    param.MaxMS2NoPeakCluster = Integer.parseInt(value);
                    break;
                }
                case "SE.MinNoPeakCluster": {
                    param.MinNoPeakCluster = Integer.parseInt(value);
                    param.MinMS2NoPeakCluster = Integer.parseInt(value);
                    break;
                }
                case "SE.MinMS2NoPeakCluster": {
                    param.MinMS2NoPeakCluster = Integer.parseInt(value);
                    break;
                }
                case "SE.MaxCurveRTRange": {
                    param.MaxCurveRTRange = Float.parseFloat(value);
                    break;
                }
                case "SE.Resolution": {
                    param.Resolution = Integer.parseInt(value);
                    break;
                }
                case "SE.RTtol": {
                    param.RTtol = Float.parseFloat(value);
                    break;
                }
                case "SE.NoPeakPerMin": {
                    param.NoPeakPerMin = Integer.parseInt(value);
                    break;
                }
                case "SE.StartCharge": {
                    param.StartCharge = Integer.parseInt(value);
                    break;
                }
                case "SE.EndCharge": {
                    param.EndCharge = Integer.parseInt(value);
                    break;
                }
                case "SE.MS2StartCharge": {
                    param.MS2StartCharge = Integer.parseInt(value);
                    break;
                }
                case "SE.MS2EndCharge": {
                    param.MS2EndCharge = Integer.parseInt(value);
                    break;
                }
                case "SE.NoMissedScan": {
                    param.NoMissedScan = Integer.parseInt(value);
                    break;
                }
                case "SE.Denoise": {
                    param.Denoise = Boolean.valueOf(value);
                    break;
                }
                case "SE.EstimateBG": {
                    param.EstimateBG = Boolean.valueOf(value);
                    break;
                }
                case "SE.RemoveGroupedPeaks": {
                    param.RemoveGroupedPeaks = Boolean.valueOf(value);
                    break;
                }
                case "SE.MinFrag": {
                    param.MinFrag = Integer.parseInt(value);
                    break;
                }
                case "SE.IsoPattern": {
                    param.IsoPattern = Float.valueOf(value);
                    break;
                }
                case "SE.StartRT": {
                    param.startRT = Float.valueOf(value);
                }
                case "SE.EndRT": {
                    param.endRT = Float.valueOf(value);
                }

                //</editor-fold>
                }
            }
        }
        //</editor-fold>

        int mode = 1;
        if (args[1].equals("-mode2")) {
            mode = 2;
        } else if (args[1].equals("-mode1")) {
            mode = 1;
        } else {
            logger.error("-mode number not recongized. The program will exit.");
        }

        String mzXML = "";
        String pepXML = "";
        String mzXMLPath = "";
        String pepXMLPath = "";
        File mzXMLfile = null;
        File pepXMLfile = null;
        File mzXMLfolder = null;
        File pepXMLfolder = null;
        int idx = 0;
        if (mode == 1) {
            mzXML = args[2];
            logger.info("Mode1 mzXML file: " + mzXML);
            mzXMLfile = new File(mzXML);
            if (!mzXMLfile.exists()) {
                logger.error("Mode1 mzXML file " + mzXMLfile.getAbsolutePath()
                        + " cannot be found. The program will exit.");
                return;
            }
            pepXML = args[3];
            logger.info("Mode1 pepXML file: " + pepXML);
            pepXMLfile = new File(pepXML);
            if (!pepXMLfile.exists()) {
                logger.error("Mode1 pepXML file " + pepXMLfile.getAbsolutePath()
                        + " cannot be found. The program will exit.");
                return;
            }
            idx = 4;
        } else if (mode == 2) {
            mzXMLPath = args[2];
            logger.info("Mode2 mzXML folder: " + mzXMLPath);
            mzXMLfolder = new File(mzXMLPath);
            if (!mzXMLfolder.exists()) {
                logger.error("Mode2 mzXML folder " + mzXMLfolder.getAbsolutePath()
                        + " does not exist. The program will exit.");
                return;
            }
            pepXMLPath = args[3];
            logger.info("Mode2 pepXML folder: " + pepXMLPath);
            pepXMLfolder = new File(pepXMLPath);
            if (!pepXMLfolder.exists()) {
                logger.error("Mode2 pepXML folder " + pepXMLfolder.getAbsolutePath()
                        + " does not exist. The program will exit.");
                return;
            }
            idx = 4;
        }

        String outputfolder = "";
        float MinProb = 0f;
        for (int i = idx; i < args.length; i++) {
            if (args[i].startsWith("-")) {
                if (args[i].equals("-ID")) {
                    param.TargetIDOnly = true;
                    logger.info("Detect ID feature only: true");
                }
                if (args[i].startsWith("-O")) {
                    outputfolder = args[i].substring(2);
                    logger.info("Output folder: " + outputfolder);

                    File outputfile = new File(outputfolder);
                    if (!outputfolder.endsWith("\\") | outputfolder.endsWith("/")) {
                        outputfolder += "/";
                    }
                    if (!outputfile.exists()) {
                        outputfile.mkdir();
                    }
                }
                if (args[i].startsWith("-C")) {
                    try {
                        NoFile = Integer.parseInt(args[i].substring(2));
                        logger.info("No of concurrent files: " + NoFile);
                    } catch (Exception ex) {
                        logger.error(args[i]
                                + " is not a correct integer format, will process only one file at a time.");
                    }
                }
                if (args[i].startsWith("-p")) {
                    try {
                        MinProb = Float.parseFloat(args[i].substring(2));
                        logger.info("probability threshold: " + MinProb);
                    } catch (Exception ex) {
                        logger.error(args[i] + " is not a correct format, will use 0 as threshold instead.");
                    }
                }
            }
        }

        reader.close();
        TandemParam tandemparam = new TandemParam(DBSearchParam.SearchInstrumentType.TOF5600);
        PTMManager.GetInstance();

        if (param.TargetIDOnly) {
            param.EstimateBG = false;
            param.ApexDelta = 1.5f;
            param.NoMissedScan = 10;
            param.MiniOverlapP = 0.2f;
            param.RemoveGroupedPeaks = false;
            param.CheckMonoIsotopicApex = false;
            param.DetectByCWT = false;
            param.FillGapByBK = false;
            param.IsoCorrThreshold = -1f;
            param.SmoothFactor = 3;
        }

        if (mode == 1) {
            logger.info("Processing " + mzXMLfile.getAbsolutePath() + "....");
            long time = System.currentTimeMillis();
            LCMSPeakMS1 LCMS1 = new LCMSPeakMS1(mzXMLfile.getAbsolutePath(), NoCPUs);
            LCMS1.SetParameter(param);

            LCMS1.Resume = false;
            if (!param.TargetIDOnly) {
                LCMS1.CreatePeakFolder();
            }
            LCMS1.ExportPeakClusterTable = true;

            if (pepXMLfile.exists()) {
                tandemparam.InteractPepXMLPath = pepXMLfile.getAbsolutePath();
                LCMS1.ParsePepXML(tandemparam, MinProb);
                logger.info("No. of PSMs included: " + LCMS1.IDsummary.PSMList.size());
                logger.info("No. of Peptide ions included: " + LCMS1.IDsummary.GetPepIonList().size());
            }

            if (param.TargetIDOnly) {
                LCMS1.SaveSerializationFile = false;
            }

            if (param.TargetIDOnly || !LCMS1.ReadPeakCluster()) {
                LCMS1.PeakClusterDetection();
            }

            if (pepXMLfile.exists()) {
                LCMS1.AssignQuant(false);
                LCMS1.IDsummary.ExportPepID(outputfolder);
            }
            time = System.currentTimeMillis() - time;
            logger.info(LCMS1.ParentmzXMLName + " processed time:"
                    + String.format("%d hour, %d min, %d sec", TimeUnit.MILLISECONDS.toHours(time),
                            TimeUnit.MILLISECONDS.toMinutes(time)
                                    - TimeUnit.HOURS.toMinutes(TimeUnit.MILLISECONDS.toHours(time)),
                            TimeUnit.MILLISECONDS.toSeconds(time)
                                    - TimeUnit.MINUTES.toSeconds(TimeUnit.MILLISECONDS.toMinutes(time))));
            LCMS1.BaseClearAllPeaks();
            LCMS1.SetSpectrumParser(null);
            LCMS1.IDsummary = null;
            LCMS1 = null;
            System.gc();
        } else if (mode == 2) {

            LCMSID IDsummary = new LCMSID("", "", "");
            logger.info("Parsing all pepXML files in " + pepXMLPath + "....");
            for (File file : pepXMLfolder.listFiles()) {
                if (file.getName().toLowerCase().endsWith("pep.xml")
                        || file.getName().toLowerCase().endsWith("pepxml")) {
                    PepXMLParser pepXMLParser = new PepXMLParser(IDsummary, file.getAbsolutePath(), MinProb);
                }
            }
            HashMap<String, LCMSID> LCMSIDMap = IDsummary.GetLCMSIDFileMap();

            ExecutorService executorPool = null;
            executorPool = Executors.newFixedThreadPool(NoFile);

            logger.info("Processing all mzXML files in " + mzXMLPath + "....");
            for (File file : mzXMLfolder.listFiles()) {
                if (file.getName().toLowerCase().endsWith("mzxml")) {
                    LCMSID id = LCMSIDMap.get(FilenameUtils.getBaseName(file.getName()));
                    if (id == null || id.PSMList == null) {
                        logger.warn("No IDs found in :" + FilenameUtils.getBaseName(file.getName())
                                + ". Quantification for this file is skipped");
                        continue;
                    }
                    if (!id.PSMList.isEmpty()) {
                        MS1TargetQuantThread thread = new MS1TargetQuantThread(file, id, NoCPUs, outputfolder,
                                param);
                        executorPool.execute(thread);
                    }
                }
            }
            LCMSIDMap.clear();
            LCMSIDMap = null;
            IDsummary = null;
            executorPool.shutdown();
            try {
                executorPool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
            } catch (InterruptedException e) {
                logger.info("interrupted..");
            }

            if (outputfolder == null | outputfolder.equals("")) {
                outputfolder = mzXMLPath;
            }

            logger.info("Merging PSM files..");
            File output = new File(outputfolder);
            FileWriter writer = new FileWriter(output.getAbsolutePath() + "/PSM_merge.csv");
            boolean header = false;
            for (File csvfile : output.listFiles()) {
                if (csvfile.getName().toLowerCase().endsWith("_psms.csv")) {
                    BufferedReader outreader = new BufferedReader(new FileReader(csvfile));
                    String outline = outreader.readLine();
                    if (!header) {
                        writer.write(outline + "\n");
                        header = true;
                    }
                    while ((outline = outreader.readLine()) != null) {
                        writer.write(outline + "\n");
                    }
                    outreader.close();
                    csvfile.delete();
                }
            }
            writer.close();
        }
        logger.info("MS1 quant module is complete.");
    } catch (Exception e) {
        Logger.getRootLogger().error(ExceptionUtils.getStackTrace(e));
        throw e;
    }
}

From source file:edu.harvard.liblab.ecru.LoadCsvData.java

/**
 * @param args//from  w  ww .j ava2 s. c o  m
 */
public static void main(String[] args) {
    if (args.length > 7 | args.length == 0 || !args[0].equals("-f") || !args[2].equals("-u")
            || !args[4].equals("-i")) {
        System.err.println(USAGE);
        System.exit(1);
    }
    String filename = args[1].trim();
    url = args[3].trim();
    needsPrefix = !args[5].equals("unique");
    isVerbose = (args.length == 7 && args[6].equals("-v"));
    System.out.println("Loading data from " + filename + " " + (needsPrefix ? "IDs will be prefixed " : " "));
    long start = System.currentTimeMillis();
    boolean isReading = false;
    CSVPrinter printer = null;

    CSVFormat format = CSVFormat.EXCEL.withHeader().withDelimiter(',').withAllowMissingColumnNames(true);
    CSVParser parser;
    try {
        if (isVerbose) {
            printer = new CSVPrinter(System.err, format.withDelimiter('|'));
        }
        parser = CSVParser.parse(new File(filename), Charset.forName("UTF-8"), format);

        solrSrvr = SingletonSolrServer.getSolrServer(url);
        for (CSVRecord record : parser) {
            numRecs++;
            HashMap<String, String> recMap = new HashMap<String, String>();
            for (String field : FIELDS) {
                String value = null;
                try {
                    value = record.get(field);
                } catch (IllegalArgumentException e) {
                    if (e.getMessage().indexOf("expected one of") == -1) {
                        e.printStackTrace();
                        System.exit(1);
                    }
                }
                value = value == null ? "" : value.trim();
                recMap.put(field, value);
            }
            String id = recMap.get("ID");
            if (id.isEmpty()) {
                if (isVerbose) {
                    System.err.println("Record missing ID: ");
                    printer.printRecord(record);
                }
            } else {
                String type = recMap.get("Type");
                SolrDocument sdoc = getDocFromSolr(recMap.get("ID"));
                try {
                    if (type.toLowerCase().equals("course")) {
                        processCourse(recMap, sdoc);
                        isReading = false;
                    } else {
                        if (!isReading) {
                            addUpdateCommit(); // just in case the preceeding course(s) are related
                        }
                        processReading(recMap, sdoc);
                        isReading = true;
                    }
                } catch (Exception e) {
                    if (isVerbose) {
                        System.err.println("Record # " + numRecs + " not used:\n\t" + e.getMessage());
                    }
                    errRecs++;
                }
            }
            if (beans.size() > 20) {
                addUpdateCommit();
            }
        }
        parser.close();
        if (beans.size() > 0 || docUpdates.size() > 0) {
            addUpdateCommit();
        }
    } catch (FileNotFoundException e) {
        System.err.println(filename + " not found");
        System.exit(1);
    } catch (Exception e) {
        e.printStackTrace();
        System.exit(1);
    }
    long end = System.currentTimeMillis();
    long courseTime = (end - start) / (long) 1000;
    try {
        solrSrvr.optimize();
    } catch (SolrServerException e) {
        e.printStackTrace();
        System.exit(1);
    } catch (IOException e) {
        e.printStackTrace();
        System.exit(1);
    }
    System.out.println(numRecs + " records found, of which " + errRecs + " had a problem; time: " + courseTime
            + " seconds " + ((courseTime > 60) ? ("(" + (courseTime / (long) 60) + " minutes)") : ""));
    System.exit(0);
}