Example usage for java.util Arrays fill

List of usage examples for java.util Arrays fill

Introduction

In this page you can find the example usage for java.util Arrays fill.

Prototype

public static void fill(Object[] a, Object val) 

Source Link

Document

Assigns the specified Object reference to each element of the specified array of Objects.

Usage

From source file:com.antsdb.saltedfish.sql.vdm.KeyUtil.java

public static void add(byte[] bytes, byte n) {
    int overflow = 0;
    for (int i = bytes.length - 1; i >= 0; i--) {
        int v = (bytes[i] & 0xff) + n + overflow;
        bytes[i] = (byte) v;
        overflow = v >>> 8;/*from   w ww  . j  a v a 2  s . c o m*/
        if (overflow == 0) {
            break;
        }
        n = 0;
    }
    if (overflow > 0) {
        Arrays.fill(bytes, (byte) 0xff);
    } else if (overflow < 0) {
        Arrays.fill(bytes, (byte) 0);
    }
}

From source file:es.udc.gii.common.eaf.benchmark.real_param.ShekelFamilyObjectiveFunction.java

@Override
public double[][] getOptimum(int dim) {

    double[][] optimums = new double[1][];
    double[] optimum = new double[4];

    Arrays.fill(optimum, 4.0 / 5.0 - 1.0);

    optimums[0] = optimum;//from   ww  w  .  j a va  2s  . c o m
    return optimums;

}

From source file:gda.analysis.numerical.straightline.StraightLineFit.java

public static Results fitInt(List<Object> data, long[] dims, double[] x) {

    Object object = data.get(0);/*from   w  w w  . j  a  v a2s.c  om*/
    if (!object.getClass().isArray()) {
        throw new IllegalArgumentException("fitInt can only accept arrays");
    }
    int numLines = ArrayUtils.getLength(object);
    int pointsPerLine = x.length;
    if (data.size() != pointsPerLine)
        throw new IllegalArgumentException("data.size() != pointsPerLine");

    for (int i = 0; i < pointsPerLine; i++) {
        if (ArrayUtils.getLength(data.get(i)) != numLines)
            throw new IllegalArgumentException("data.get(i).length != numLines");

    }

    double[] slopes = new double[numLines];
    double[] offsets = new double[numLines];
    short[] fitoks = new short[numLines];
    Arrays.fill(fitoks, (short) 0);
    if (pointsPerLine > 2) {
        double xAverage = getXAverage(x);
        double x1 = getX(x, xAverage);
        double[] y = new double[pointsPerLine];

        Arrays.fill(fitoks, (short) 1);
        for (int line = 0; line < numLines; line++) {
            for (int point = 0; point < pointsPerLine; point++) {
                y[point] = Array.getDouble(data.get(point), line);
            }
            Result fit2 = fit2(y, x, xAverage, x1);
            slopes[line] = fit2.getSlope();
            offsets[line] = fit2.getOffset();
        }
    } else if (pointsPerLine == 2) {

        double[] y = new double[pointsPerLine];
        Arrays.fill(fitoks, (short) 1);
        for (int line = 0; line < numLines; line++) {
            for (int point = 0; point < pointsPerLine; point++) {
                y[point] = Array.getDouble(data.get(point), line);
            }

            slopes[line] = (y[1] - y[0]) / (x[1] - x[0]);
            offsets[line] = y[1] - slopes[line] * x[1];
        }
    }
    return new Results(offsets, slopes, dims, fitoks);
}

From source file:com.bconomy.autobit.Encryption.java

private static byte[] charsToBytes(char[] chars) {
    CharBuffer charBuffer = CharBuffer.wrap(chars);
    ByteBuffer byteBuffer = Charset.forName("UTF-8").encode(charBuffer);
    byte[] bytes = Arrays.copyOfRange(byteBuffer.array(), byteBuffer.position(), byteBuffer.limit());
    Arrays.fill(charBuffer.array(), '\u0000'); // clear sensitive data
    Arrays.fill(byteBuffer.array(), (byte) 0); // clear sensitive data
    Arrays.fill(chars, '\u0000'); // clear sensitive data
    return bytes;
}

From source file:net.myrrix.common.collection.FastByIDMap.java

/**
 * Creates a new  whose capacity can accommodate the given number of entries without
 * rehash.//from   w  w w  .j  a  v a 2s . c  o m
 *
 * @param size desired capacity
 * @throws IllegalArgumentException if size is less than 0, maxSize is less than 1
 *  or at least half of {@link RandomUtils#MAX_INT_SMALLER_TWIN_PRIME}, or
 *  loadFactor is less than 1
 */
public FastByIDMap(int size) {
    Preconditions.checkArgument(size >= 0, "size must be at least 0");
    Preconditions.checkArgument(size < MAX_SIZE, "size must be less than " + MAX_SIZE);
    int hashSize = RandomUtils.nextTwinPrime((int) (DEFAULT_LOAD_FACTOR * size) + 1);
    keys = new long[hashSize];
    Arrays.fill(keys, NULL);

    @SuppressWarnings("unchecked")
    V[] theValues = (V[]) new Object[hashSize];
    values = theValues;
}

From source file:com.cloudera.oryx.common.collection.LongSet.java

/**
 * Creates a new {@code LongSet} with the given initial capacity.
 *
 * @param initialCapacity initial capacity of set
 *//*from   w w  w . j  a v  a 2  s  . com*/
public LongSet(int initialCapacity) {
    Preconditions.checkArgument(initialCapacity >= 0, "initialCapacity must be at least 0");
    Preconditions.checkArgument(initialCapacity < MAX_SIZE, "initialCapacity must be less than %d", MAX_SIZE);
    int hashSize = RandomUtils.nextTwinPrime((int) (LOAD_FACTOR * initialCapacity) + 1);
    keys = new long[hashSize];
    Arrays.fill(keys, NULL);
}

From source file:net.femtoparsec.jnlmin.GradientEvaluator.java

/**
 * Evaluate the model and compute its gradient. If the model cannot compute its gradient, an approximation is obtained with forward differences.
 * If the model can compute its gradient, this call is equivalent to :
 *
 * <pre>/*w  w w.  j  a va 2s. c o  m*/
 * model.evaluate(parameter, true, resultBuffer)
 * return 1
 * </pre>
 * @param parameters the parameters at which the model must be evaluated.
 * @param resultBuffer the result buffer that will contain the value and the gradient of the model at the given parameters.
 * @param computationBuffer a buffer used for computation.
 * @return the number of times the model has been evaluated
 */
public int evaluateWithGradient(double[] parameters, ModelResult resultBuffer, ModelResult computationBuffer) {
    int nbEvaluations;
    if (model.hasDerivative()) {
        model.evaluate(parameters, true, resultBuffer);
        nbEvaluations = 1;
    } else {
        model.evaluate(parameters, false, resultBuffer);

        final double[] gradient = resultBuffer.getGradient();

        Arrays.fill(gradient, 0);

        double increment, backup;
        double invIncrement;
        int subIndex;

        for (int i = 0; i < nbFitted; i++) {
            subIndex = indexes[i];
            backup = parameters[subIndex];

            increment = this.epsilon * Math.abs(backup);
            if (increment <= 0) {
                increment = this.epsilon;
            }
            invIncrement = 1. / increment;

            parameters[subIndex] += increment;
            model.evaluate(parameters, false, computationBuffer);
            parameters[subIndex] = backup;
            gradient[subIndex] = (computationBuffer.getValue() - resultBuffer.getValue()) * invIncrement;
        }

        nbEvaluations = 1 + nbFitted;
    }

    return nbEvaluations;
}

From source file:bookkeepr.xmlable.DatabaseManager.java

public DatabaseManager() {

    Arrays.fill(nextId, 0x1L);
    for (int i = 0; i < latestIds.length; i++) {
        Arrays.fill(latestIds[i], 0x0L);
    }/* www.j av  a  2 s. co  m*/
    for (int i = 0; i < listeners.length; i++) {
        listeners[i] = new ArrayList();
    }
}

From source file:com.qtplaf.library.trading.data.indicators.GaussianSmoother.java

/**
 * Calculates the indicator data at the given index, for the list of indicator sources.
 * <p>//from   w w  w. ja v a  2  s.  c o  m
 * This indicator already calculated data is passed as a parameter because some indicators may need previous
 * calculated values or use them to improve calculation performance.
 * 
 * @param index The data index.
 * @param indicatorSources The list of indicator sources.
 * @param indicatorData This indicator already calculated data.
 * @return The result data.
 */
@Override
public Data calculate(int index, List<IndicatorSource> indicatorSources, DataList indicatorData) {

    // If index < 0 do nothing.
    if (index < 0) {
        return null;
    }

    // The unique data list and the index of the data.
    int period = getIndicatorInfo().getParameter("PERIOD").getValue().getInteger();

    // If index < period, calculate the mean from scratch.
    if (index < period) {
        return getSource(index, indicatorSources);
    }

    // The Gaussian curve fitter and the Gaussian function.
    GaussianCurveFitter fitter = GaussianCurveFitter.create();
    Gaussian.Parametric function = new Gaussian.Parametric();

    // For every indicator source, build the list of observation points.
    int numIndexes = getNumIndexes();
    double[] values = new double[numIndexes];
    Arrays.fill(values, 0);
    int valueIndex = 0;
    for (IndicatorSource source : indicatorSources) {
        DataList dataList = source.getDataList();
        List<Integer> indexes = source.getIndexes();
        for (Integer dataIndex : indexes) {

            // The list of observations.
            WeightedObservedPoints obs = new WeightedObservedPoints();
            int startIndex = index - period + 1;
            int endIndex = index;
            int x = 0;
            for (int i = startIndex; i <= endIndex; i++) {
                double y = dataList.get(i).getValue(dataIndex);
                obs.add(x, y);
                x++;
            }

            // Reduce last x to get the last coordinate applied.
            x--;

            // The parameters to apply to the function.
            double[] params = fitter.fit(obs.toList());

            // The value.
            values[valueIndex] = function.value(x, params);
            valueIndex++;
        }
    }

    Data data = new Data();
    data.setData(values);
    data.setTime(indicatorSources.get(0).getDataList().get(index).getTime());
    return data;
}

From source file:bide.core.par.TunePar.java

private void setType(String type) {

    int typeIndex = -1;
    if (type.equalsIgnoreCase("normal")) {
        typeIndex = 0;//ww w.j av  a 2s.  c  o  m
    } else if (type.equalsIgnoreCase("normalbig")) {
        typeIndex = 1;
    } else if (type.equalsIgnoreCase("scale")) {
        typeIndex = 2;
    }

    tuneType = new int[noTunePar];
    Arrays.fill(tuneType, typeIndex);

}