Example usage for java.util Arrays fill

List of usage examples for java.util Arrays fill

Introduction

In this page you can find the example usage for java.util Arrays fill.

Prototype

public static void fill(Object[] a, Object val) 

Source Link

Document

Assigns the specified Object reference to each element of the specified array of Objects.

Usage

From source file:juicebox.matrix.InMemoryMatrix.java

public void fill(float value) {
    Arrays.fill(data, value);

    // Invalidate bounds
    lowerValue = Float.NaN;
    upperValue = Float.NaN;
}

From source file:gda.analysis.numerical.straightline.StraightLineFit.java

/**
 * //from  w  w  w  .j  a  v a2  s .c om
 * @param data Points on a line are the set data.get(i)[m] where i varies from point to point
 * on the line
 * @param x
 * @return Array of Result of length equal to the length of the data arrays
 */
public static Results fit(List<double[]> data, long[] dims, double[] x) {

    int numLines = data.get(0).length;
    int pointsPerLine = x.length;
    if (data.size() != pointsPerLine)
        throw new IllegalArgumentException("data.size() != pointsPerLine");

    for (int i = 0; i < pointsPerLine; i++) {
        if (data.get(i).length != numLines)
            throw new IllegalArgumentException("data.get(i).length != numLines");

    }
    double xAverage = getXAverage(x);
    double x1 = getX(x, xAverage);
    double[] y = new double[pointsPerLine];
    double[] slopes = new double[numLines];
    double[] offsets = new double[numLines];
    short[] fitoks = new short[numLines];
    Arrays.fill(fitoks, (short) 0);
    if (pointsPerLine >= 2) {
        Arrays.fill(fitoks, (short) 1);
        for (int line = 0; line < numLines; line++) {
            for (int point = 0; point < pointsPerLine; point++) {
                y[point] = data.get(point)[line];
            }
            Result fit2 = fit2(y, x, xAverage, x1);
            slopes[line] = fit2.getSlope();
            offsets[line] = fit2.getOffset();
        }
    }
    return new Results(offsets, slopes, dims, fitoks);
}

From source file:name.martingeisse.stackd.common.cubes.RawCubes.java

/**
 * Builds an instance of this type, filled uniformly with a single cube type.
 * @param clusterSize the cluster size/*from  w w w .  j  a v a 2  s . c o  m*/
 * @param cubeType the cube type to fill the returned object with
 * @return the cubes object
 */
public static RawCubes buildUniform(final ClusterSize clusterSize, final byte cubeType) {
    final byte[] cubes = new byte[clusterSize.getCellCount()];
    Arrays.fill(cubes, cubeType);
    return new RawCubes(cubes);
}

From source file:hivemall.common.SpaceEfficientDenseModel.java

public SpaceEfficientDenseModel(int ndims, boolean withCovar) {
    int size = ndims + 1;
    this.size = size;
    this.weights = new short[size];
    if (withCovar) {
        short[] covars = new short[size];
        Arrays.fill(covars, HalfFloat.ONE);
        this.covars = covars;
    } else {// w  w w .j a v a2s  . c  om
        this.covars = null;
    }
}

From source file:com.webcohesion.ofx4j.io.tagsoup.TestTagSoupOFXReader.java

/**
 * tests using sax to parse an OFX doc./*from ww w.  jav  a2s  .c o  m*/
 */
public void testVersion1() throws Exception {
    TagSoupOFXReader reader = new TagSoupOFXReader();
    final Map<String, String> headers = new HashMap<String, String>();
    final Stack<Map<String, Object>> aggregateStack = new Stack<Map<String, Object>>();
    TreeMap<String, Object> root = new TreeMap<String, Object>();
    aggregateStack.push(root);

    reader.setContentHandler(new DefaultHandler() {

        @Override
        public void onHeader(String name, String value) {
            LOG.debug(name + ":" + value);
            headers.put(name, value);
        }

        @Override
        public void onElement(String name, String value) {
            char[] tabs = new char[aggregateStack.size() * 2];
            Arrays.fill(tabs, ' ');
            LOG.debug(new String(tabs) + name + "=" + value);

            aggregateStack.peek().put(name, value);
        }

        @Override
        public void startAggregate(String aggregateName) {
            char[] tabs = new char[aggregateStack.size() * 2];
            Arrays.fill(tabs, ' ');
            LOG.debug(new String(tabs) + aggregateName + " {");

            TreeMap<String, Object> aggregate = new TreeMap<String, Object>();
            aggregateStack.peek().put(aggregateName, aggregate);
            aggregateStack.push(aggregate);
        }

        @Override
        public void endAggregate(String aggregateName) {
            aggregateStack.pop();

            char[] tabs = new char[aggregateStack.size() * 2];
            Arrays.fill(tabs, ' ');
            LOG.debug(new String(tabs) + "}");
        }
    });
    reader.parse(TestNanoXMLOFXReader.class.getResourceAsStream("example-response.ofx"));
    assertEquals(9, headers.size());
    assertEquals(1, aggregateStack.size());
    assertSame(root, aggregateStack.pop());
}

From source file:edu.utexas.cs.tactex.tariffoptimization.OptimizerWrapperApachePowell.java

@Override
public TreeMap<Double, TariffSpecification> findOptimum(TariffUtilityEstimate tariffUtilityEstimate,
        int NUM_RATES, int numEval) {

    double[] startingVertex = new double[NUM_RATES]; // start from the fixed-rate tariff's offset
    Arrays.fill(startingVertex, 0.0);

    PowellOptimizer optimizer = new PowellOptimizer(1e-3, 5);

    // needed since one optimization found positive 
    // charges (paying customer to consume...)
    double[][] boundaries = createBoundaries(NUM_RATES);

    final PointValuePair optimum = optimizer.optimize(new MaxEval(numEval),
            //new ObjectiveFunction(new MultivariateFunctionMappingAdapter(tariffUtilityEstimate, boundaries[0], boundaries[1])),
            new ObjectiveFunction(new OptimizerWrapperApacheObjective(tariffUtilityEstimate)),
            GoalType.MAXIMIZE, new InitialGuess(startingVertex));

    TreeMap<Double, TariffSpecification> eval2TOUTariff = new TreeMap<Double, TariffSpecification>();
    eval2TOUTariff.put(optimum.getValue(), tariffUtilityEstimate.getCorrespondingSpec(optimum.getKey()));
    return eval2TOUTariff;
}

From source file:edu.oregonstate.eecs.mcplan.domains.sailing.SailingWorlds.java

public static SailingState squareIsland(final int V, final int T, final int dim, final int island_dim) {
    final String[] spec = new String[dim];
    final char[] water = new char[dim];
    Arrays.fill(water, 'w');
    final char[] island = new char[dim];
    Arrays.fill(island, 'w');
    final int water_left = (dim - island_dim) / 2;

    for (int j = 0; j < island_dim; ++j) {
        island[water_left + j] = 'l';
    }//from  w ww .j a  v  a  2s .c  o  m

    for (int i = 0; i < dim; ++i) {
        if (i >= water_left && i < water_left + island_dim) {
            spec[i] = new String(island);
        } else {
            spec[i] = new String(water);
        }
    }

    final SailingTerrain[][] terrain = parse(spec, 1);
    return new SailingState(terrain, V, T);
}

From source file:mase.app.allocation.AllocationProblem.java

@Override
public void setup(EvolutionState state, Parameter base) {
    super.setup(state, base);
    ParamUtils.autoSetParameters(this, state, base, defaultBase(), false);

    nulify = new double[numAgents];
    Arrays.fill(nulify, Double.NaN);

    dimensions = state.parameters.getInt(new Parameter("vector.species.genome-size"), null);

    // calculate types, if not given
    if (uniqueTypes == null) {
        int div = numAgents / numUniqueTypes;
        int rem = numAgents % numUniqueTypes;
        uniqueTypes = new int[numUniqueTypes];
        for (int i = 0; i < numUniqueTypes; i++) {
            uniqueTypes[i] = div;/*from  www.  j  a v a  2s .  c  o  m*/
            if (rem > 0) {
                uniqueTypes[i]++;
                rem--;
            }
        }
    } else {
        state.output.warning("Overriding numTypes with the given types");
    }

    // validate simulation parameters
    int checkSum = 0;
    for (int t : uniqueTypes) {
        checkSum += t;
    }
    if (checkSum != numAgents) {
        state.output
                .fatal("Optimal allocation " + checkSum + " does not match the number of agents " + numAgents);
    }
    if (numClusters > 0 && (clusterSize < 0 || clusterSize > 1)) {
        state.output.fatal("Invalid cluster size [0,1]: " + clusterSize);
    }
    if (minSeparation == -1) {
        minSeparation = FastMath.sqrt(dimensions) / 3;
        state.output.warning("Using default min separation sqrt(dimensions)/3: " + minSeparation);
    }

    // randomly create target points
    Random rand = new Random((int) state.job[0]);
    double[][] unique = new double[uniqueTypes.length][];
    if (numClusters == 0) {
        double[] min = new double[dimensions], max = new double[dimensions];
        Arrays.fill(min, 0);
        Arrays.fill(max, 1);
        unique = generateDispersedPoints(rand, uniqueTypes.length, minSeparation, min, max);
    } else {
        double[] min = new double[dimensions], max = new double[dimensions];
        Arrays.fill(min, clusterSize / 2);
        Arrays.fill(max, 1 - clusterSize / 2);
        double[][] centers = generateDispersedPoints(rand, numClusters, minSeparation, min, max);
        int perCluster = uniqueTypes.length / numClusters;
        int remaining = uniqueTypes.length % numClusters;
        for (int i = 0; i < centers.length; i++) {
            for (int j = 0; j < dimensions; j++) {
                min[j] = centers[i][j] - clusterSize / 2;
                max[j] = centers[i][j] + clusterSize / 2;
            }
            int size = perCluster;
            if (remaining > 0) {
                size++;
                remaining--;
            }
            double[][] generated = generateDispersedPoints(rand, size, 0, min, max);
            System.arraycopy(generated, 0, unique, i * perCluster, generated.length);
        }
    }

    types = new double[numAgents][];
    int index = 0;
    for (int i = 0; i < unique.length; i++) {
        for (int j = 0; j < uniqueTypes[i]; j++) {
            types[index++] = unique[i];
        }
    }

    // debug: print types
    for (int i = 0; i < types.length; i++) {
        System.out.println(i + ": " + Arrays.toString(types[i]));
    }
    System.out.print("  ");
    for (int i = 0; i < types.length; i++) {
        System.out.printf("%6d", i);
    }
    System.out.println();
    for (int i = 0; i < types.length; i++) {
        System.out.printf("%2d", i);
        for (int j = 0; j < types.length; j++) {
            System.out.printf(" %.3f", DIST.compute(types[i], types[j]));
        }
        System.out.println();
    }
}

From source file:gedi.lfc.gui.LfcMapper.java

@Override
public PixelBlockToValuesMap map(ReferenceSequence reference, GenomicRegion region,
        PixelLocationMapping pixelMapping, PixelBlockToValuesMap data) {

    double[] counts = new double[2];

    PixelBlockToValuesMap re = new PixelBlockToValuesMap(data.getBlocks(), 2, NumericArrayType.Double);
    for (int i = 0; i < pixelMapping.size(); i++) {
        NumericArray in = data.getValues(i);
        Arrays.fill(counts, 0);

        for (int c = 0; c < in.length(); c++) {
            int cond = contrast == null ? (c * 2) / in.length() : contrast.getMappedIndex(c);
            if (cond != -1)
                counts[cond] += in.getDouble(c);
        }/*from w  w w  . ja v  a2 s .  c  o  m*/
        NumericArray out = re.getValues(i);
        if (ArrayUtils.max(counts) > 0) {
            //            out.set(0, Math.log(counts[0]/counts[1])/Math.log(2));

            BetaDistribution dist = new BetaDistribution(counts[0] + 1, counts[1] + 1);
            out.set(0, pToLfc(dist.inverseCumulativeProbability(lower)));
            out.set(1, pToLfc(dist.inverseCumulativeProbability(upper)));
        } else {
            out.setDouble(0, Double.NaN);
            out.setDouble(1, Double.NaN);
        }
    }

    return re;
}

From source file:com.ori.outlierserver.model.DataUtil.java

private double[] getOutlierBounderysFromLits(List<Reading> list) {
    if (list == null) {
        return null;
    }//from   w  w w. j  av a 2  s. com

    if (list.size() == 1) {
        double[] arrayForOne = new double[4];
        Arrays.fill(arrayForOne, list.get(0).getMedian_value());
        return arrayForOne;
    }

    List<Double> values = new ArrayList<>();
    list.stream().forEach((Reading r) -> {
        values.add(r.getMedian_value());
    });
    int theSize = values.size();
    if (theSize == 1) {
        return new double[] {};
    }
    Collections.sort(values);
    boolean isEven = theSize % 2 == 0;
    double medianValue = findMedianValue(values);
    List<Double> lowerHalf = new ArrayList<>();
    List<Double> upperHalf = new ArrayList<>();
    for (Double d : values) {
        if (d.compareTo(medianValue) == -1) {
            lowerHalf.add(d);
        }
    }
    for (Double d : values) {
        if (d.compareTo(medianValue) >= 0) {
            upperHalf.add(d);
        }
    }

    double medianLow = findMedianValue(lowerHalf);
    double medianHigh = findMedianValue(upperHalf);

    double minorFenceDelta = (medianHigh - medianLow) * 1.5;
    double majorFenceDelta = (medianHigh - medianLow) * 3;

    return new double[] { medianLow - majorFenceDelta, medianLow - minorFenceDelta,
            medianHigh + minorFenceDelta, medianHigh + majorFenceDelta };
}