List of usage examples for java.nio ByteBuffer allocateDirect
public static ByteBuffer allocateDirect(int capacity)
From source file:org.apache.hadoop.crypto.CryptoStreamsTestBase.java
/** Test byte buffer read with different buffer size. */ @Test(timeout = 120000)// ww w . ja v a 2s.c o m public void testByteBufferRead() throws Exception { OutputStream out = getOutputStream(defaultBufferSize); writeData(out); // Default buffer size, initial buffer position is 0 InputStream in = getInputStream(defaultBufferSize); ByteBuffer buf = ByteBuffer.allocate(dataLen + 100); byteBufferReadCheck(in, buf, 0); in.close(); // Default buffer size, initial buffer position is not 0 in = getInputStream(defaultBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 11); in.close(); // Small buffer size, initial buffer position is 0 in = getInputStream(smallBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 0); in.close(); // Small buffer size, initial buffer position is not 0 in = getInputStream(smallBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 11); in.close(); // Direct buffer, default buffer size, initial buffer position is 0 in = getInputStream(defaultBufferSize); buf = ByteBuffer.allocateDirect(dataLen + 100); byteBufferReadCheck(in, buf, 0); in.close(); // Direct buffer, default buffer size, initial buffer position is not 0 in = getInputStream(defaultBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 11); in.close(); // Direct buffer, small buffer size, initial buffer position is 0 in = getInputStream(smallBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 0); in.close(); // Direct buffer, small buffer size, initial buffer position is not 0 in = getInputStream(smallBufferSize); buf.clear(); byteBufferReadCheck(in, buf, 11); in.close(); }
From source file:x10.x10rt.yarn.ApplicationMaster.java
protected void handleX10() { // handle X10 place requests Iterator<SelectionKey> events = null; while (running) { try {/* ww w.ja va 2s .c o m*/ SelectionKey key; // check for previously unhandled events if (events != null && events.hasNext()) { key = events.next(); events.remove(); } else if (selector.select() == 0) // check for new events continue; // nothing to process, go back and block on select again else { // select returned some events events = selector.selectedKeys().iterator(); key = events.next(); events.remove(); } // process the selectionkey if (key.isAcceptable()) { LOG.info("New connection from X10 detected"); // accept any connections on the server socket, and look for things to read from it ServerSocketChannel ssc = (ServerSocketChannel) key.channel(); SocketChannel sc = ssc.accept(); sc.configureBlocking(false); sc.register(selector, SelectionKey.OP_READ); } if (key.isReadable()) { SocketChannel sc = (SocketChannel) key.channel(); ByteBuffer incomingMsg; if (pendingReads.containsKey(sc)) incomingMsg = pendingReads.remove(sc); else incomingMsg = ByteBuffer.allocateDirect(headerLength).order(ByteOrder.nativeOrder()); LOG.info("Reading message from X10"); try { if (sc.read(incomingMsg) == -1) { // socket closed sc.close(); key.cancel(); pendingReads.remove(sc); } else if (incomingMsg.hasRemaining()) { LOG.info("Message header partially read. " + incomingMsg.remaining() + " bytes remaining"); pendingReads.put(sc, incomingMsg); } else { // buffer is full if (incomingMsg.capacity() == headerLength) { // check to see if there is a body associated with this message header int datalen = incomingMsg.getInt(headerLength - 4); //System.err.println("Byte order is "+incomingMsg.order()+" datalen="+datalen); if (datalen == 0) processMessage(incomingMsg, sc); else { // create a larger array to hold the header+body ByteBuffer newBuffer = ByteBuffer.allocateDirect(headerLength + datalen) .order(ByteOrder.nativeOrder()); incomingMsg.rewind(); newBuffer.put(incomingMsg); incomingMsg = newBuffer; sc.read(incomingMsg); // read in the body, if available if (incomingMsg.hasRemaining()) { LOG.info("Message partially read. " + incomingMsg.remaining() + " bytes remaining"); pendingReads.put(sc, incomingMsg); } else processMessage(incomingMsg, sc); } } } } catch (IOException e) { LOG.warn("Error reading in message from socket channel", e); } } } catch (IOException e) { LOG.warn("Error handling X10 links", e); } } }
From source file:com.bytelightning.opensource.pokerface.PokerFace.java
/** * Configures all the needed components, but does not actually start the server. * @param config Contains all information needed to fully wire up the http, https, and httpclient components of this reverse proxy. * @throws Exception Yeah, a lot can go wrong here, but at least it will be caught immediately :-) *//*from w w w .j a v a 2s . c o m*/ public void config(HierarchicalConfiguration config) throws Exception { List<HierarchicalConfiguration> lconf; HttpAsyncRequester executor = null; BasicNIOConnPool connPool = null; ObjectPool<ByteBuffer> byteBufferPool = null; LinkedHashMap<String, TargetDescriptor> mappings = null; ConcurrentMap<String, HttpHost> hosts = null; handlerRegistry = new UriHttpAsyncRequestHandlerMapper(); // Initialize the keystore (if one was specified) KeyStore keystore = null; char[] keypass = null; String keystoreUri = config.getString("keystore"); if ((keystoreUri != null) && (keystoreUri.trim().length() > 0)) { Path keystorePath = Utils.MakePath(keystoreUri); if (!Files.exists(keystorePath)) throw new ConfigurationException("Keystore does not exist."); if (Files.isDirectory(keystorePath)) throw new ConfigurationException("Keystore is not a file"); String storepass = config.getString("storepass"); if ((storepass != null) && "null".equals(storepass)) storepass = null; keystore = KeyStore.getInstance(KeyStore.getDefaultType()); try (InputStream keyStoreStream = Files.newInputStream(keystorePath)) { keystore.load(keyStoreStream, storepass == null ? null : storepass.trim().toCharArray()); } catch (IOException ex) { Logger.error("Unable to load https server keystore from " + keystoreUri); return; } keypass = config.getString("keypass").trim().toCharArray(); } // Wire up the listening reactor lconf = config.configurationsAt("server"); if ((lconf == null) || (lconf.size() != 1)) throw new ConfigurationException("One (and only one) server configuration element is allowed."); else { Builder builder = IOReactorConfig.custom(); builder.setIoThreadCount(ComputeReactorProcessors(config.getDouble("server[@cpu]", 0.667))); builder.setSoTimeout(config.getInt("server[@soTimeout]", 0)); builder.setSoLinger(config.getInt("server[@soLinger]", -1)); builder.setSoReuseAddress(true); builder.setTcpNoDelay(false); builder.setSelectInterval(100); IOReactorConfig rconfig = builder.build(); Logger.info("Configuring server with options: " + rconfig.toString()); listeningReactor = new DefaultListeningIOReactor(rconfig); lconf = config.configurationsAt("server.listen"); InetSocketAddress addr; boolean hasNonWildcardSecure = false; LinkedHashMap<SocketAddress, SSLContext> addrSSLContext = new LinkedHashMap<SocketAddress, SSLContext>(); if ((lconf == null) || (lconf.size() == 0)) { addr = new InetSocketAddress("127.0.0.1", 8080); ListenerEndpoint ep = listeningReactor.listen(addr); Logger.warn("Configured " + ep.getAddress()); } else { TrustManager[] trustManagers = null; KeyManagerFactory kmf = null; // Create all the specified listeners. for (HierarchicalConfiguration hc : lconf) { String addrStr = hc.getString("[@address]"); if ((addrStr == null) || (addrStr.length() == 0)) addrStr = "0.0.0.0"; String alias = hc.getString("[@alias]"); int port = hc.getInt("[@port]", alias != null ? 443 : 80); addr = new InetSocketAddress(addrStr, port); ListenerEndpoint ep = listeningReactor.listen(addr); String protocol = hc.containsKey("[@protocol]") ? hc.getString("[@protocol]") : null; Boolean secure = hc.containsKey("[@secure]") ? hc.getBoolean("[@secure]") : null; if ((alias != null) && (secure == null)) secure = true; if ((protocol != null) && (secure == null)) secure = true; if ((secure != null) && secure) { if (protocol == null) protocol = "TLS"; if (keystore == null) throw new ConfigurationException( "An https listening socket was requested, but no keystore was specified."); if (kmf == null) { kmf = KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm()); kmf.init(keystore, keypass); } // Are we going to trust all clients or just specific ones? if (hc.getBoolean("[@trustAny]", true)) trustManagers = new TrustManager[] { new X509TrustAllManager() }; else { TrustManagerFactory instance = TrustManagerFactory .getInstance(TrustManagerFactory.getDefaultAlgorithm()); instance.init(keystore); trustManagers = instance.getTrustManagers(); } KeyManager[] keyManagers = kmf.getKeyManagers(); if (alias != null) for (int i = 0; i < keyManagers.length; i++) { if (keyManagers[i] instanceof X509ExtendedKeyManager) keyManagers[i] = new PokerFaceKeyManager(alias, (X509ExtendedKeyManager) keyManagers[i]); } SSLContext sslCtx = SSLContext.getInstance(protocol); sslCtx.init(keyManagers, trustManagers, new SecureRandom()); if (addr.getAddress().isAnyLocalAddress()) { // This little optimization helps us respond faster for every connection as we don't have to extrapolate a local connection address to wild card. for (Enumeration<NetworkInterface> en = NetworkInterface.getNetworkInterfaces(); en .hasMoreElements();) { NetworkInterface intf = en.nextElement(); for (Enumeration<InetAddress> enumIpAddr = intf.getInetAddresses(); enumIpAddr .hasMoreElements();) { addr = new InetSocketAddress(enumIpAddr.nextElement(), port); addrSSLContext.put(addr, sslCtx); } } } else { addrSSLContext.put(addr, sslCtx); hasNonWildcardSecure = true; } } Logger.warn("Configured " + (alias == null ? "" : (protocol + " on")) + ep.getAddress()); } } // We will need an HTTP protocol processor for the incoming connections String serverAgent = config.getString("server.serverAgent", "PokerFace/" + Utils.Version); HttpProcessor inhttpproc = new ImmutableHttpProcessor( new HttpResponseInterceptor[] { new ResponseDateInterceptor(), new ResponseServer(serverAgent), new ResponseContent(), new ResponseConnControl() }); HttpAsyncService serviceHandler = new HttpAsyncService(inhttpproc, new DefaultConnectionReuseStrategy(), null, handlerRegistry, null) { public void exception(final NHttpServerConnection conn, final Exception cause) { Logger.warn(cause.getMessage()); super.exception(conn, cause); } }; if (addrSSLContext.size() > 0) { final SSLContext defaultCtx = addrSSLContext.values().iterator().next(); final Map<SocketAddress, SSLContext> sslMap; if ((!hasNonWildcardSecure) || (addrSSLContext.size() == 1)) sslMap = null; else sslMap = addrSSLContext; listeningDispatcher = new DefaultHttpServerIODispatch(serviceHandler, new SSLNHttpServerConnectionFactory(defaultCtx, null, ConnectionConfig.DEFAULT) { protected SSLIOSession createSSLIOSession(IOSession iosession, SSLContext sslcontext, SSLSetupHandler sslHandler) { SSLIOSession retVal; SSLContext sktCtx = sslcontext; if (sslMap != null) { SocketAddress la = iosession.getLocalAddress(); if (la != null) { sktCtx = sslMap.get(la); if (sktCtx == null) sktCtx = sslcontext; } retVal = new SSLIOSession(iosession, SSLMode.SERVER, sktCtx, sslHandler); } else retVal = super.createSSLIOSession(iosession, sktCtx, sslHandler); if (sktCtx != null) retVal.setAttribute("com.bytelightning.opensource.pokerface.secure", true); return retVal; } }); } else listeningDispatcher = new DefaultHttpServerIODispatch(serviceHandler, ConnectionConfig.DEFAULT); } // Configure the httpclient reactor that will be used to do reverse proxing to the specified targets. lconf = config.configurationsAt("targets"); if ((lconf != null) && (lconf.size() > 0)) { HierarchicalConfiguration conf = lconf.get(0); Builder builder = IOReactorConfig.custom(); builder.setIoThreadCount(ComputeReactorProcessors(config.getDouble("targets[@cpu]", 0.667))); builder.setSoTimeout(conf.getInt("targets[@soTimeout]", 0)); builder.setSoLinger(config.getInt("targets[@soLinger]", -1)); builder.setConnectTimeout(conf.getInt("targets[@connectTimeout]", 0)); builder.setSoReuseAddress(true); builder.setTcpNoDelay(false); connectingReactor = new DefaultConnectingIOReactor(builder.build()); final int bufferSize = conf.getInt("targets[@bufferSize]", 1024) * 1024; byteBufferPool = new SoftReferenceObjectPool<ByteBuffer>(new BasePooledObjectFactory<ByteBuffer>() { @Override public ByteBuffer create() throws Exception { return ByteBuffer.allocateDirect(bufferSize); } @Override public PooledObject<ByteBuffer> wrap(ByteBuffer buffer) { return new DefaultPooledObject<ByteBuffer>(buffer); } }); KeyManager[] keyManagers = null; TrustManager[] trustManagers = null; if (keystore != null) { KeyManagerFactory kmf = KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm()); kmf.init(keystore, keypass); keyManagers = kmf.getKeyManagers(); } // Will the httpclient's trust any remote target, or only specific ones. if (conf.getBoolean("targets[@trustAny]", false)) trustManagers = new TrustManager[] { new X509TrustAllManager() }; else if (keystore != null) { TrustManagerFactory instance = TrustManagerFactory .getInstance(TrustManagerFactory.getDefaultAlgorithm()); instance.init(keystore); trustManagers = instance.getTrustManagers(); } SSLContext clientSSLContext = SSLContext.getInstance(conf.getString("targets[@protocol]", "TLS")); clientSSLContext.init(keyManagers, trustManagers, new SecureRandom()); // Setup an SSL capable connection pool for the httpclients. connPool = new BasicNIOConnPool(connectingReactor, new BasicNIOConnFactory(clientSSLContext, null, ConnectionConfig.DEFAULT), conf.getInt("targets[@connectTimeout]", 0)); connPool.setMaxTotal(conf.getInt("targets[@connMaxTotal]", 1023)); connPool.setDefaultMaxPerRoute(conf.getInt("targets[@connMaxPerRoute]", 1023)); // Set up HTTP protocol processor for outgoing connections String userAgent = conf.getString("targets.userAgent", "PokerFace/" + Utils.Version); HttpProcessor outhttpproc = new ImmutableHttpProcessor(new HttpRequestInterceptor[] { new RequestContent(), new RequestTargetHost(), new RequestConnControl(), new RequestUserAgent(userAgent), new RequestExpectContinue(true) }); executor = new HttpAsyncRequester(outhttpproc, new DefaultConnectionReuseStrategy()); // Now set up all the configured targets. mappings = new LinkedHashMap<String, TargetDescriptor>(); hosts = new ConcurrentHashMap<String, HttpHost>(); String[] scheme = { null }; String[] host = { null }; int[] port = { 0 }; String[] path = { null }; int[] stripPrefixCount = { 0 }; for (HierarchicalConfiguration targetConfig : conf.configurationsAt("target")) { String match = targetConfig.getString("[@pattern]"); if ((match == null) || (match.trim().length() < 1)) { Logger.error("Unable to configure target; Invalid url match pattern"); continue; } String key = RequestForTargetConsumer.UriToTargetKey(targetConfig.getString("[@url]"), scheme, host, port, path, stripPrefixCount); if (key == null) { Logger.error("Unable to configure target"); continue; } HttpHost targetHost = hosts.get(key); if (targetHost == null) { targetHost = new HttpHost(host[0], port[0], scheme[0]); hosts.put(key, targetHost); } TargetDescriptor desc = new TargetDescriptor(targetHost, path[0], stripPrefixCount[0]); mappings.put(match, desc); } connectionDispatcher = new DefaultHttpClientIODispatch(new HttpAsyncRequestExecutor(), ConnectionConfig.DEFAULT); } // Allocate the script map which will be populated by it's own executor thread. if (config.containsKey("scripts.rootDirectory")) { Path tmp = Utils.MakePath(config.getProperty("scripts.rootDirectory")); if (!Files.exists(tmp)) throw new FileNotFoundException("Scripts directory does not exist."); if (!Files.isDirectory(tmp)) throw new FileNotFoundException("'scripts' path is not a directory."); scripts = new ConcurrentSkipListMap<String, ScriptObjectMirror>(); boolean watch = config.getBoolean("scripts.dynamicWatch", false); List<Path> jsLibs; Object prop = config.getProperty("scripts.library"); if (prop != null) { jsLibs = new ArrayList<Path>(); if (prop instanceof Collection<?>) { @SuppressWarnings("unchecked") Collection<Object> oprop = (Collection<Object>) prop; for (Object obj : oprop) jsLibs.add(Utils.MakePath(obj)); } else { jsLibs.add(Utils.MakePath(prop)); } } else jsLibs = null; lconf = config.configurationsAt("scripts.scriptConfig"); if (lconf != null) { if (lconf.size() > 1) throw new ConfigurationException("Only one scriptConfig element is allowed."); if (lconf.size() == 0) lconf = null; } HierarchicalConfiguration scriptConfig; if (lconf == null) scriptConfig = new HierarchicalConfiguration(); else scriptConfig = lconf.get(0); scriptConfig.setProperty("pokerface.scripts.rootDirectory", tmp.toString()); configureScripts(jsLibs, scriptConfig, tmp, watch); if (watch) ScriptDirectoryWatcher = new DirectoryWatchService(); } // Configure the static file directory (if any) Path staticFilesPath = null; if (config.containsKey("files.rootDirectory")) { Path tmp = Utils.MakePath(config.getProperty("files.rootDirectory")); if (!Files.exists(tmp)) throw new FileNotFoundException("Files directory does not exist."); if (!Files.isDirectory(tmp)) throw new FileNotFoundException("'files' path is not a directory."); staticFilesPath = tmp; List<HierarchicalConfiguration> mimeEntries = config.configurationsAt("files.mime-entry"); if (mimeEntries != null) { for (HierarchicalConfiguration entry : mimeEntries) { entry.setDelimiterParsingDisabled(true); String type = entry.getString("[@type]", "").trim(); if (type.length() == 0) throw new ConfigurationException("Invalid mime type entry"); String extensions = entry.getString("[@extensions]", "").trim(); if (extensions.length() == 0) throw new ConfigurationException("Invalid mime extensions for: " + type); ScriptHelperImpl.AddMimeEntry(type, extensions); } } } handlerRegistry.register("/*", new RequestHandler(executor, connPool, byteBufferPool, staticFilesPath, mappings, scripts != null ? Collections.unmodifiableNavigableMap(scripts) : null, config.getBoolean("scripts.allowScriptsToSpecifyDynamicHosts", false) ? hosts : null)); }
From source file:edu.hawaii.soest.kilonalu.dvp2.DavisWxParser.java
public static void main(String[] args) { // Ensure we have a path to the binary file if (args.length != 1) { logger.info("Please provide the path to a file containing a binary LOOP packet."); System.exit(1);// w w w .ja v a 2 s . c o m } else { try { // open and read the file File packetFile = new File(args[0]); FileInputStream fis = new FileInputStream(packetFile); FileChannel fileChannel = fis.getChannel(); ByteBuffer inBuffer = ByteBuffer.allocateDirect(8192); ByteBuffer packetBuffer = ByteBuffer.allocateDirect(8192); while (fileChannel.read(inBuffer) != -1 || inBuffer.position() > 0) { inBuffer.flip(); packetBuffer.put(inBuffer.get()); inBuffer.compact(); } fileChannel.close(); fis.close(); packetBuffer.put(inBuffer.get()); // create an instance of the parser, and report the field contents after parsing DavisWxParser davisWxParser = new DavisWxParser(packetBuffer); // Set up a simple logger that logs to the console PropertyConfigurator.configure(davisWxParser.getLogConfigurationFile()); logger.info("loopID: " + davisWxParser.getLoopID()); logger.info("barTrend: " + davisWxParser.getBarTrend()); logger.info("barTrendAsString: " + davisWxParser.getBarTrendAsString()); logger.info("packetType: " + davisWxParser.getPacketType()); logger.info("nextRecord: " + davisWxParser.getNextRecord()); logger.info("barometer: " + davisWxParser.getBarometer()); logger.info("insideTemperature: " + davisWxParser.getInsideTemperature()); logger.info("insideHumidity: " + davisWxParser.getInsideHumidity()); logger.info("outsideTemperature: " + davisWxParser.getOutsideTemperature()); logger.info("windSpeed: " + davisWxParser.getWindSpeed()); logger.info("tenMinuteAverageWindSpeed: " + davisWxParser.getTenMinuteAverageWindSpeed()); logger.info("windDirection: " + davisWxParser.getWindDirection()); logger.info( "extraTemperatures: " + Arrays.toString(davisWxParser.getExtraTemperatures())); logger.info( "soilTemperatures: " + Arrays.toString(davisWxParser.getSoilTemperatures())); logger.info( "leafTemperatures: " + Arrays.toString(davisWxParser.getLeafTemperatures())); logger.info("outsideHumidity: " + davisWxParser.getOutsideHumidity()); logger.info( "extraHumidities: " + Arrays.toString(davisWxParser.getExtraHumidities())); logger.info("rainRate: " + davisWxParser.getRainRate()); logger.info("uvRadiation: " + davisWxParser.getUvRadiation()); logger.info("solarRadiation: " + davisWxParser.getSolarRadiation()); logger.info("stormRain: " + davisWxParser.getStormRain()); logger.info("currentStormStartDate: " + davisWxParser.getCurrentStormStartDate()); logger.info("dailyRain: " + davisWxParser.getDailyRain()); logger.info("monthlyRain: " + davisWxParser.getMonthlyRain()); logger.info("yearlyRain: " + davisWxParser.getYearlyRain()); logger.info("dailyEvapoTranspiration: " + davisWxParser.getDailyEvapoTranspiration()); logger.info("monthlyEvapoTranspiration: " + davisWxParser.getMonthlyEvapoTranspiration()); logger.info("yearlyEvapoTranspiration: " + davisWxParser.getYearlyEvapoTranspiration()); logger.info("soilMoistures: " + Arrays.toString(davisWxParser.getSoilMoistures())); logger.info("leafWetnesses: " + Arrays.toString(davisWxParser.getLeafWetnesses())); logger.info("insideAlarm: " + davisWxParser.getInsideAlarm()); logger.info("rainAlarm: " + davisWxParser.getRainAlarm()); logger.info("outsideAlarms: " + davisWxParser.getOutsideAlarms()); logger.info("extraTemperatureHumidityAlarms: " + davisWxParser.getExtraTemperatureHumidityAlarms()); logger.info("soilLeafAlarms: " + davisWxParser.getSoilLeafAlarms()); logger.info("transmitterBatteryStatus: " + davisWxParser.getTransmitterBatteryStatus()); logger.info("consoleBatteryVoltage: " + davisWxParser.getConsoleBatteryVoltage()); logger.info("forecastIconValues: " + davisWxParser.getForecastAsString()); logger.info("forecastRuleNumber: " + davisWxParser.getForecastRuleNumberAsString()); logger.info("timeOfSunrise: " + davisWxParser.getTimeOfSunrise()); logger.info("timeOfSunset: " + davisWxParser.getTimeOfSunset()); logger.info("recordDelimiter: " + davisWxParser.getRecordDelimiterAsHexString()); logger.info("crcChecksum: " + davisWxParser.getCrcChecksum()); } catch (java.io.FileNotFoundException fnfe) { fnfe.printStackTrace(); } catch (java.io.IOException ioe) { ioe.printStackTrace(); } } }
From source file:com.sveder.cardboardpassthrough.MainActivity.java
/** * Creates the buffers we use to store information about the 3D world. OpenGL doesn't use Java * arrays, but rather needs data in a format it can understand. Hence we use ByteBuffers. * @param config The EGL configuration used when creating the surface. *//*from w ww .j av a 2s . c om*/ @Override public void onSurfaceCreated(EGLConfig config) { Log.i(TAG, "onSurfaceCreated"); GLES20.glClearColor(0.1f, 0.1f, 0.1f, 0.5f); // Dark background so text shows up well ByteBuffer bb = ByteBuffer.allocateDirect(squareVertices.length * 4); bb.order(ByteOrder.nativeOrder()); vertexBuffer = bb.asFloatBuffer(); vertexBuffer.put(squareVertices); vertexBuffer.position(0); ByteBuffer dlb = ByteBuffer.allocateDirect(drawOrder.length * 2); dlb.order(ByteOrder.nativeOrder()); drawListBuffer = dlb.asShortBuffer(); drawListBuffer.put(drawOrder); drawListBuffer.position(0); ByteBuffer bb2 = ByteBuffer.allocateDirect(textureVertices.length * 4); bb2.order(ByteOrder.nativeOrder()); textureVerticesBuffer = bb2.asFloatBuffer(); textureVerticesBuffer.put(textureVertices); textureVerticesBuffer.position(0); int vertexShader = loadGLShader(GLES20.GL_VERTEX_SHADER, vertexShaderCode); int fragmentShader = loadGLShader(GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode); mProgram = GLES20.glCreateProgram(); // create empty OpenGL ES Program GLES20.glAttachShader(mProgram, vertexShader); // add the vertex shader to program GLES20.glAttachShader(mProgram, fragmentShader); // add the fragment shader to program GLES20.glLinkProgram(mProgram); texture = createTexture(); startCamera(texture); // ByteBuffer bbVertices = ByteBuffer.allocateDirect(DATA.CUBE_COORDS.length * 4); // bbVertices.order(ByteOrder.nativeOrder()); // mCubeVertices = bbVertices.asFloatBuffer(); // mCubeVertices.put(DATA.CUBE_COORDS); // mCubeVertices.position(0); // // ByteBuffer bbColors = ByteBuffer.allocateDirect(DATA.CUBE_COLORS.length * 4); // bbColors.order(ByteOrder.nativeOrder()); // mCubeColors = bbColors.asFloatBuffer(); // mCubeColors.put(DATA.CUBE_COLORS); // mCubeColors.position(0); // // ByteBuffer bbFoundColors = ByteBuffer.allocateDirect(DATA.CUBE_FOUND_COLORS.length * 4); // bbFoundColors.order(ByteOrder.nativeOrder()); // mCubeFoundColors = bbFoundColors.asFloatBuffer(); // mCubeFoundColors.put(DATA.CUBE_FOUND_COLORS); // mCubeFoundColors.position(0); // // ByteBuffer bbNormals = ByteBuffer.allocateDirect(DATA.CUBE_NORMALS.length * 4); // bbNormals.order(ByteOrder.nativeOrder()); // mCubeNormals = bbNormals.asFloatBuffer(); // mCubeNormals.put(DATA.CUBE_NORMALS); // mCubeNormals.position(0); // // // make a floor // ByteBuffer bbFloorVertices = ByteBuffer.allocateDirect(DATA.FLOOR_COORDS.length * 4); // bbFloorVertices.order(ByteOrder.nativeOrder()); // mFloorVertices = bbFloorVertices.asFloatBuffer(); // mFloorVertices.put(DATA.FLOOR_COORDS); // mFloorVertices.position(0); // // ByteBuffer bbFloorNormals = ByteBuffer.allocateDirect(DATA.FLOOR_NORMALS.length * 4); // bbFloorNormals.order(ByteOrder.nativeOrder()); // mFloorNormals = bbFloorNormals.asFloatBuffer(); // mFloorNormals.put(DATA.FLOOR_NORMALS); // mFloorNormals.position(0); // // ByteBuffer bbFloorColors = ByteBuffer.allocateDirect(DATA.FLOOR_COLORS.length * 4); // bbFloorColors.order(ByteOrder.nativeOrder()); // mFloorColors = bbFloorColors.asFloatBuffer(); // mFloorColors.put(DATA.FLOOR_COLORS); // mFloorColors.position(0); // // int vertexShader = loadGLShader(GLES20.GL_VERTEX_SHADER, R.raw.light_vertex); // int gridShader = loadGLShader(GLES20.GL_FRAGMENT_SHADER, R.raw.grid_fragment); // // mGlProgram = GLES20.glCreateProgram(); // GLES20.glAttachShader(mGlProgram, vertexShader); // GLES20.glAttachShader(mGlProgram, gridShader); // GLES20.glLinkProgram(mGlProgram); // // GLES20.glEnable(GLES20.GL_DEPTH_TEST); // // // Object first appears directly in front of user // Matrix.setIdentityM(mModelCube, 0); // Matrix.translateM(mModelCube, 0, 0, 0, -mObjectDistance); // // Matrix.setIdentityM(mModelFloor, 0); // Matrix.translateM(mModelFloor, 0, 0, -mFloorDepth, 0); // Floor appears below user // // checkGLError("onSurfaceCreated"); }
From source file:edu.hawaii.soest.kilonalu.ctd.SeahorseSource.java
/** * A method that executes the streaming of data from the source to the RBNB * server after all configuration of settings, connections to hosts, and * thread initiatizing occurs. This method contains the detailed code for * streaming the data and interpreting the stream. *//*from ww w. j a va2s . c om*/ protected boolean execute() { logger.debug("SeahorseSource.execute() called."); // do not execute the stream if there is no connection if (!isConnected()) return false; boolean failed = false; this.socketChannel = getSocketConnection(); // while data are being sent, read them into the buffer try { // create four byte placeholders used to evaluate up to a four-byte // window. The FIFO layout looks like: // ------------------------- // in ---> | One | Two |Three|Four | ---> out // ------------------------- byte byteOne = 0x00, // set initial placeholder values byteTwo = 0x00, byteThree = 0x00, byteFour = 0x00; // define a byte array that will be used to manipulate the incoming bytes byte[] resultArray; String resultString; // Create a buffer that will store the result bytes as they are read ByteBuffer resultBuffer = ByteBuffer.allocate(getBufferSize()); // create a byte buffer to store bytes from the TCP stream ByteBuffer buffer = ByteBuffer.allocateDirect(getBufferSize()); this.rbnbChannelMap = new ChannelMap(); this.channelIndex = 0; // initiate the session with the modem, test if is network registered this.command = this.MODEM_COMMAND_PREFIX + this.REGISTRATION_STATUS_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); // while there are bytes to read from the socketChannel ... while (socketChannel.read(buffer) != -1 || buffer.position() > 0) { // prepare the buffer for reading buffer.flip(); // while there are unread bytes in the ByteBuffer while (buffer.hasRemaining()) { byteOne = buffer.get(); //logger.debug("b1: " + new String(Hex.encodeHex((new byte[]{byteOne}))) + "\t" + // "b2: " + new String(Hex.encodeHex((new byte[]{byteTwo}))) + "\t" + // "b3: " + new String(Hex.encodeHex((new byte[]{byteThree}))) + "\t" + // "b4: " + new String(Hex.encodeHex((new byte[]{byteFour}))) + "\t" + // "result pos: " + resultBuffer.position() + "\t" + // "result rem: " + resultBuffer.remaining() + "\t" + // "result cnt: " + resultByteCount + "\t" + // "buffer pos: " + buffer.position() + "\t" + // "buffer rem: " + buffer.remaining() + "\t" + // "state: " + state //); // Use a State Machine to process the byte stream. // Start building an rbnb frame for the entire sample, first by // inserting a timestamp into the channelMap. This time is merely // the time of insert into the data turbine, not the time of // observations of the measurements. That time should be parsed out // of the sample in the Sink client code switch (state) { case 0: // the network registration status should end in OK\r\n // note bytes are in reverse order in the FIFO window if (byteOne == 0x0A && byteTwo == 0x0D && byteThree == 0x4B && byteFour == 0x4F) { logger.debug("Received the registration status result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the network registration status string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Network Registration Result: " + resultString.trim()); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // send a request for the signal strength this.command = this.MODEM_COMMAND_PREFIX + this.SIGNAL_STRENGTH_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 1; break; } else { this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } break; } case 1: // report the signal strength of the Iridium modem // the signal strength status should end in OK\r\n // note bytes are in reverse order in the FIFO window if (byteOne == 0x0A && byteTwo == 0x0D && byteThree == 0x4B && byteFour == 0x4F) { logger.debug("Received the signal strength result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the signal strength status string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Signal Strength Result: " + resultString.trim()); int signalStrengthIndex = resultString.indexOf(this.SIGNAL_STRENGTH) + 5; int signalStrength = new Integer( resultString.substring(signalStrengthIndex, signalStrengthIndex + 1)) .intValue(); // test if the signal strength is above the threshold if (signalStrength > SIGNAL_THRESHOLD) { resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 2; break; // the signal strength is too low, check again } else { resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // resend a request for the signal strength this.command = this.MODEM_COMMAND_PREFIX + this.SIGNAL_STRENGTH_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 1; break; } } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 2: // handle the RING command from the instrument // listen for the RING command // note bytes are in reverse order in the FIFO window if (byteOne == 0x47 && byteTwo == 0x4E && byteThree == 0x49 && byteFour == 0x52) { logger.debug("Received the RING command."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // answer the call this.command = this.MODEM_COMMAND_PREFIX + this.ANSWER_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 3; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 3: // acknowledge the connection // the ready status string should end in READY\r // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x59 && byteThree == 0x44 && byteFour == 0x41) { logger.debug("Received the ready status result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the connect rate and ready status string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); // test the connect rate logger.debug("Result from ATA: " + resultString); if (resultString.indexOf(this.CONNECT_RATE) > 0) { logger.debug("Connect Rate Result: " + this.CONNECT_RATE); // test the ready status if (resultString.indexOf(this.READY_STATUS) > 0) { logger.debug("Connect Rate Result: " + this.READY_STATUS); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // acknowledge the ready status this.command = this.ACKNOWLEDGE_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to receive the ACK streamingThread.sleep(this.SLEEP_INTERVAL); // query the instrument id this.command = this.ID_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 4; break; } else { logger.debug("The ready status differs from: " + this.READY_STATUS); // throw an exception here? break; } } else { logger.debug("The connect rate differs from: " + this.CONNECT_RATE); // throw an exception here? break; } } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 4: // get the instrument id // the instrument ID string should end in \r if (byteOne == 0x0D) { logger.debug("Received the instrument ID result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the instrument ID string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Seahorse Instrument ID: " + resultString.trim()); // set the platformID variable this.platformID = resultString.substring(0, resultString.length() - 1); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // query the battery voltage this.command = this.BATTERY_VOLTAGE_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 5; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 5: // get the seahorse battery voltage // the battery voltage string should end in \r if (byteOne == 0x0D) { logger.debug("Received the instrument battery voltage result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the battery voltage string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Seahorse Battery Voltage: " + resultString.trim()); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // query the GPS location this.command = this.GPRMC_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 6; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 6: // the GPRMC string should end in END\r // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x44 && byteThree == 0x4E && byteFour == 0x45) { logger.debug("Received the GPRMS result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the GPRMC string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Seahorse GPRMC string: " + resultString.trim()); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; // query the file name for transfer this.command = this.FILENAME_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); state = 7; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 7: // the file name string should end in .Z\r // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x5A && byteThree == 0x2E) { logger.debug("Received the file name result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the file name string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("File name result: " + resultString.trim()); resultString = resultString.trim(); int fileNameIndex = resultString.indexOf(this.FILENAME_PREFIX); //extract just the filename from the result (excise the "FILE=") this.fileNameToDownload = resultString.substring( (fileNameIndex + (this.FILENAME_PREFIX).length()), resultString.length()); logger.debug("File name to download: " + this.fileNameToDownload); // test to see if the GFN command returns FILES=NONE if (!(resultString.indexOf(this.END_OF_FILES) > 0)) { // there is a file to download. parse the file name, // get the number of blocks to transfer this.command = this.NUMBER_OF_BLOCKS_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 8; break; } else { // We have downloaded all files. Parse the data string, // build the channel map, and flush the data to the Dataturbine // by iterating through the data matrix. The metadata and // ASCII data strings are flushed once with the first matrix // row. // Parse the data file, not the cast file. try { // parse the CTD data file this.ctdParser = new CTDParser(this.dataFileString); // convert the raw frequencies and voltages to engineering // units and return the data as a matrix CTDConverter ctdConverter = new CTDConverter(this.ctdParser); ctdConverter.convert(); RealMatrix convertedDataMatrix = ctdConverter.getConvertedDataValuesMatrix(); // Register the data and metadata channels; failed = register(); if (!failed) { // format the first sample date and use it as the first insert // date. Add the sampleInterval on each iteration to insert // subsequent data rows. Sample interval is by default // 4 scans/second for the CTD. DATE_FORMAT.setTimeZone(TZ); this.sampleDateTime = Calendar.getInstance(); this.sampleDateTime .setTime(DATE_FORMAT.parse(ctdParser.getFirstSampleTime())); for (int row = 0; row < convertedDataMatrix.getRowDimension(); row++) { // Only insert the metadata fields and full ASCII text strings // with the first row of data if (row == 0) { // Add the samplingMode data to the channel map this.channelIndex = this.rbnbChannelMap.Add("samplingMode"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getSamplingMode()); // Add the firstSampleTime data to the channel map this.channelIndex = this.rbnbChannelMap.Add("firstSampleTime"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getFirstSampleTime()); // Add the fileName data to the channel map this.channelIndex = this.rbnbChannelMap.Add("fileName"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getFileName()); // Add the temperatureSerialNumber data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureSerialNumber"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getTemperatureSerialNumber()); // Add the conductivitySerialNumber data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivitySerialNumber"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getConductivitySerialNumber()); // Add the systemUpLoadTime data to the channel map this.channelIndex = this.rbnbChannelMap.Add("systemUpLoadTime"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getSystemUpLoadTime()); // Add the cruiseInformation data to the channel map this.channelIndex = this.rbnbChannelMap.Add("cruiseInformation"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getCruiseInformation()); // Add the stationInformation data to the channel map this.channelIndex = this.rbnbChannelMap.Add("stationInformation"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getStationInformation()); // Add the shipInformation data to the channel map this.channelIndex = this.rbnbChannelMap.Add("shipInformation"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getShipInformation()); // Add the chiefScientist data to the channel map this.channelIndex = this.rbnbChannelMap.Add("chiefScientist"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getChiefScientist()); // Add the organization data to the channel map this.channelIndex = this.rbnbChannelMap.Add("organization"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getOrganization()); // Add the areaOfOperation data to the channel map this.channelIndex = this.rbnbChannelMap.Add("areaOfOperation"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getAreaOfOperation()); // Add the instrumentPackage data to the channel map this.channelIndex = this.rbnbChannelMap.Add("instrumentPackage"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getInstrumentPackage()); // Add the mooringNumber data to the channel map this.channelIndex = this.rbnbChannelMap.Add("mooringNumber"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getMooringNumber()); // Add the instrumentLatitude data to the channel map this.channelIndex = this.rbnbChannelMap.Add("instrumentLatitude"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getInstrumentLatitude() }); // Add the instrumentLongitude data to the channel map this.channelIndex = this.rbnbChannelMap.Add("instrumentLongitude"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getInstrumentLongitude() }); // Add the depthSounding data to the channel map this.channelIndex = this.rbnbChannelMap.Add("depthSounding"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getDepthSounding() }); // Add the profileNumber data to the channel map this.channelIndex = this.rbnbChannelMap.Add("profileNumber"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getProfileNumber()); // Add the profileDirection data to the channel map this.channelIndex = this.rbnbChannelMap.Add("profileDirection"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getProfileDirection()); // Add the deploymentNotes data to the channel map this.channelIndex = this.rbnbChannelMap.Add("deploymentNotes"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getDeploymentNotes()); // Add the mainBatteryVoltage data to the channel map this.channelIndex = this.rbnbChannelMap.Add("mainBatteryVoltage"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getMainBatteryVoltage() }); // Add the lithiumBatteryVoltage data to the channel map this.channelIndex = this.rbnbChannelMap .Add("lithiumBatteryVoltage"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getLithiumBatteryVoltage() }); // Add the operatingCurrent data to the channel map this.channelIndex = this.rbnbChannelMap.Add("operatingCurrent"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getOperatingCurrent() }); // Add the pumpCurrent data to the channel map this.channelIndex = this.rbnbChannelMap.Add("pumpCurrent"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPumpCurrent() }); // Add the channels01ExternalCurrent data to the channel map this.channelIndex = this.rbnbChannelMap .Add("channels01ExternalCurrent"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getChannels01ExternalCurrent() }); // Add the channels23ExternalCurrent data to the channel map this.channelIndex = this.rbnbChannelMap .Add("channels23ExternalCurrent"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getChannels23ExternalCurrent() }); // Add the loggingStatus data to the channel map this.channelIndex = this.rbnbChannelMap.Add("loggingStatus"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getLoggingStatus()); // Add the numberOfScansToAverage data to the channel map this.channelIndex = this.rbnbChannelMap .Add("numberOfScansToAverage"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getNumberOfScansToAverage() }); // Add the numberOfSamples data to the channel map this.channelIndex = this.rbnbChannelMap.Add("numberOfSamples"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getNumberOfSamples() }); // Add the numberOfAvailableSamples data to the channel map this.channelIndex = this.rbnbChannelMap .Add("numberOfAvailableSamples"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getNumberOfAvailableSamples() }); // Add the sampleInterval data to the channel map this.channelIndex = this.rbnbChannelMap.Add("sampleInterval"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getSampleInterval() }); // Add the measurementsPerSample data to the channel map this.channelIndex = this.rbnbChannelMap .Add("measurementsPerSample"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getMeasurementsPerSample() }); // Add the transmitRealtime data to the channel map this.channelIndex = this.rbnbChannelMap.Add("transmitRealtime"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getTransmitRealtime()); // Add the numberOfCasts data to the channel map this.channelIndex = this.rbnbChannelMap.Add("numberOfCasts"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getNumberOfCasts() }); // Add the minimumConductivityFrequency data to the channel map this.channelIndex = this.rbnbChannelMap .Add("minimumConductivityFrequency"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getMinimumConductivityFrequency() }); // Add the pumpDelay data to the channel map this.channelIndex = this.rbnbChannelMap.Add("pumpDelay"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsInt32(this.channelIndex, new int[] { this.ctdParser.getPumpDelay() }); // Add the automaticLogging data to the channel map this.channelIndex = this.rbnbChannelMap.Add("automaticLogging"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getAutomaticLogging()); // Add the ignoreMagneticSwitch data to the channel map this.channelIndex = this.rbnbChannelMap.Add("ignoreMagneticSwitch"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getIgnoreMagneticSwitch()); // Add the batteryType data to the channel map this.channelIndex = this.rbnbChannelMap.Add("batteryType"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getBatteryType()); // Add the batteryCutoff data to the channel map this.channelIndex = this.rbnbChannelMap.Add("batteryCutoff"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getBatteryCutoff()); // Add the pressureSensorType data to the channel map this.channelIndex = this.rbnbChannelMap.Add("pressureSensorType"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getPressureSensorType()); // Add the pressureSensorRange data to the channel map this.channelIndex = this.rbnbChannelMap.Add("pressureSensorRange"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getPressureSensorRange()); // Add the sbe38TemperatureSensor data to the channel map this.channelIndex = this.rbnbChannelMap .Add("sbe38TemperatureSensor"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getSbe38TemperatureSensor()); // Add the gasTensionDevice data to the channel map this.channelIndex = this.rbnbChannelMap.Add("gasTensionDevice"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getGasTensionDevice()); // Add the externalVoltageChannelZero data to the channel map this.channelIndex = this.rbnbChannelMap .Add("externalVoltageChannelZero"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getExternalVoltageChannelZero()); // Add the externalVoltageChannelOne data to the channel map this.channelIndex = this.rbnbChannelMap .Add("externalVoltageChannelOne"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getExternalVoltageChannelOne()); // Add the externalVoltageChannelTwo data to the channel map this.channelIndex = this.rbnbChannelMap .Add("externalVoltageChannelTwo"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getExternalVoltageChannelTwo()); // Add the externalVoltageChannelThree data to the channel map this.channelIndex = this.rbnbChannelMap .Add("externalVoltageChannelThree"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getExternalVoltageChannelThree()); // Add the echoCommands data to the channel map this.channelIndex = this.rbnbChannelMap.Add("echoCommands"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getEchoCommands()); // Add the outputFormat data to the channel map this.channelIndex = this.rbnbChannelMap.Add("outputFormat"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getOutputFormat()); // Add the temperatureCalibrationDate data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureCalibrationDate"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getTemperatureCalibrationDate()); // Add the temperatureCoefficientTA0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureCoefficientTA0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA0() }); // Add the temperatureCoefficientTA1 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureCoefficientTA1"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA1() }); // Add the temperatureCoefficientTA2 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureCoefficientTA2"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA2() }); // Add the temperatureCoefficientTA3 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureCoefficientTA3"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getTemperatureCoefficientTA3() }); // Add the temperatureOffsetCoefficient data to the channel map this.channelIndex = this.rbnbChannelMap .Add("temperatureOffsetCoefficient"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getTemperatureOffsetCoefficient() }); // Add the conductivityCalibrationDate data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCalibrationDate"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getConductivityCalibrationDate()); // Add the conductivityCoefficientG data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientG"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientG() }); // Add the conductivityCoefficientH data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientH"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientH() }); // Add the conductivityCoefficientI data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientI"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientI() }); // Add the conductivityCoefficientJ data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientJ"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientJ() }); // Add the conductivityCoefficientCF0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientCF0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCF0() }); // Add the conductivityCoefficientCPCOR data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientCPCOR"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCPCOR() }); // Add the conductivityCoefficientCTCOR data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientCTCOR"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getConductivityCoefficientCTCOR() }); // Add the conductivityCoefficientCSLOPE data to the channel map this.channelIndex = this.rbnbChannelMap .Add("conductivityCoefficientCSLOPE"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser .getConductivityCoefficientCSLOPE() }); // Add the pressureSerialNumber data to the channel map this.channelIndex = this.rbnbChannelMap.Add("pressureSerialNumber"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.ctdParser.getPressureSerialNumber()); // Add the pressureCoefficientPA0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPA0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA0() }); // Add the pressureCoefficientPA1 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPA1"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA1() }); // Add the pressureCoefficientPA2 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPA2"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPA2() }); // Add the pressureCoefficientPTCA0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCA0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA0() }); // Add the pressureCoefficientPTCA1 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCA1"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA1() }); // Add the pressureCoefficientPTCA2 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCA2"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCA2() }); // Add the pressureCoefficientPTCB0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCB0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB0() }); // Add the pressureCoefficientPTCB1 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCB1"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB1() }); // Add the pressureCoefficientPTCB2 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTCB2"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTCB2() }); // Add the pressureCoefficientPTEMPA0 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTEMPA0"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA0() }); // Add the pressureCoefficientPTEMPA1 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTEMPA1"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA1() }); // Add the pressureCoefficientPTEMPA2 data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureCoefficientPTEMPA2"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureCoefficientPTEMPA2() }); // Add the pressureOffsetCoefficient data to the channel map this.channelIndex = this.rbnbChannelMap .Add("pressureOffsetCoefficient"); this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { this.ctdParser.getPressureOffsetCoefficient() }); // Insert the file into the channel map. this.channelIndex = this.rbnbChannelMap.Add(this.rbnbChannelName); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.dataFileString); this.channelIndex = this.rbnbChannelMap.Add("ASCIICastData"); this.rbnbChannelMap.PutMime(this.channelIndex, "text/plain"); this.rbnbChannelMap.PutDataAsString(this.channelIndex, this.castFileString); } // Add in the matrix data row to the map here List<String> variableNames = ctdParser.getDataVariableNames(); List<String> variableUnits = ctdParser.getDataVariableUnits(); // iterate through the variable names and add them to // the channel map. for (int variableIndex = 0; variableIndex < variableNames .size(); variableIndex++) { // Add the variable name to the channel map this.channelIndex = this.rbnbChannelMap .Add(variableNames.get(variableIndex)); // The matrix is a double array, so set the data type below this.rbnbChannelMap.PutMime(this.channelIndex, "application/octet-stream"); // add the data to the map from the [row,column] of the // matrix (row is from the outer for loop) this.rbnbChannelMap.PutDataAsFloat64(this.channelIndex, new double[] { convertedDataMatrix.getEntry(row, variableIndex) }); } // Flush the channel map to the RBNB double sampleTimeAsSecondsSinceEpoch = (double) (this.sampleDateTime .getTimeInMillis() / 1000); this.rbnbChannelMap.PutTime(sampleTimeAsSecondsSinceEpoch, 0d); getSource().Flush(this.rbnbChannelMap); logger.info("Flushed data to the DataTurbine."); this.rbnbChannelMap.Clear(); // samples are taken 4x per second, so increment the // sample time by 250 milliseconds for the next insert this.sampleDateTime.add(Calendar.MILLISECOND, 250); } // end for loop } // end if !failed } catch (Exception e) { logger.debug("Failed to parse the CTD data file: " + e.getMessage()); } // there are no more files to read. close the Tx session. this.command = this.CLOSE_TRANSFER_SESSION_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); // clean up resultBuffer.clear(); this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 10; break; } } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 8: // the number of blocks string should end in \r if (byteOne == 0x0D) { logger.debug("Received the number of blocks result."); this.resultByteCount++; // add the last byte found to the count // add the last byte found to the result buffer if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); resultBuffer.put(byteOne); } // report the number of blocks string resultArray = new byte[this.resultByteCount]; resultBuffer.flip(); resultBuffer.get(resultArray); resultString = new String(resultArray, "US-ASCII"); logger.debug("Number of bytes reported: " + resultString.trim()); int numberOfBlocksIndex = resultString.indexOf(this.BLOCKSIZE_PREFIX); // If 'BLOCKSIZE=' is not found, set the index to 0 if (numberOfBlocksIndex == -1) { numberOfBlocksIndex = 0; } resultString = resultString.substring( (numberOfBlocksIndex + (this.BLOCKSIZE_PREFIX).length()), resultString.length()); // convert the string to an integer try { this.numberOfBlocks = new Integer(resultString.trim()).intValue(); logger.debug("Number of bytes to download: " + this.numberOfBlocks); } catch (java.lang.NumberFormatException nfe) { failed = true; nfe.printStackTrace(); logger.debug("Failed to convert returned string value " + "to an integer value. The returned string is: " + this.numberOfBlocks); } // test to see if the GNB command returns DONE\r if (!(resultString.indexOf(this.TRANSFER_COMPLETE) > 0)) { // there are bytes to transfer. send the transfer command this.command = this.TRANSFER_BLOCKS_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); //resultBuffer.clear(); dont clear the buffer this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 9; break; } else { // there are no more bytes to transfer. // Decompress the file, which is under zlib compression. Inflater inflater = new Inflater(); inflater.setInput(resultBuffer.array()); byte[] output = new byte[resultBuffer.capacity()]; int numDecompressed = inflater.inflate(output); // set the appropriate string variable if (this.fileNameToDownload.indexOf(DATA_FILE_PREFIX) > 0) { this.dataFileString = new String(output); //report the file contents to the log logger.debug("File " + this.fileNameToDownload + ": "); logger.debug(this.dataFileString); } else { this.castFileString = new String(output); //report the file contents to the log logger.debug("File " + this.fileNameToDownload + ": "); logger.debug(this.castFileString); } // Ask for the next file. this.command = this.FILENAME_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); //resultBuffer.clear(); dont clear the buffer this.resultByteCount = 0; resultArray = new byte[0]; resultString = ""; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 7; //back to the file name state break; } } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 9: // transfer up to the reported number of bytes if (this.resultByteCount == this.numberOfBlocks) { // we have downloaded the reported bytes. get the next section. // get the number of blocks to transfer this.command = this.NUMBER_OF_BLOCKS_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); //resultBuffer.clear(); this.resultByteCount = 0; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 8; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 10: // the response from the modem should end in BYE\r // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x45 && byteThree == 0x59 && byteFour == 0x42) { logger.debug("Received the BYE command."); // continue to disconnect. send the escape sequence this.command = this.ESCAPE_SEQUENCE_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); resultBuffer.clear(); this.resultByteCount = 0; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 11; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 11: // the response from the modem should end in OK\r\n // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x0A && byteThree == 0x4B && byteFour == 0x4F) { // now hang up. this.command = this.MODEM_COMMAND_PREFIX + this.HANGUP_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); resultBuffer.clear(); this.resultByteCount = 0; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 12; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } case 12: // the response from the modem should end in OK\r\n // note bytes are in reverse order in the FIFO window if (byteOne == 0x0D && byteTwo == 0x0A && byteThree == 0x4B && byteFour == 0x4F) { // we are done. re-test if is network registered this.command = this.MODEM_COMMAND_PREFIX + this.REGISTRATION_STATUS_COMMAND + this.MODEM_COMMAND_SUFFIX; this.sentCommand = queryInstrument(this.command); // allow time for the modem to respond streamingThread.sleep(this.SLEEP_INTERVAL); resultBuffer.clear(); this.resultByteCount = 0; byteOne = 0x00; byteTwo = 0x00; byteThree = 0x00; byteFour = 0x00; state = 0; break; } else { // still in the middle of the result, keep adding bytes this.resultByteCount++; // add each byte found if (resultBuffer.remaining() > 0) { resultBuffer.put(byteOne); } else { resultBuffer.compact(); logger.debug("Compacting resultBuffer ..."); resultBuffer.put(byteOne); } break; } } // end switch statement // shift the bytes in the FIFO window byteFour = byteThree; byteThree = byteTwo; byteTwo = byteOne; } //end while (more unread bytes) // prepare the buffer to read in more bytes from the stream buffer.compact(); } // end while (more socketChannel bytes to read) socketChannel.close(); } catch (IOException e) { // handle exceptions // In the event of an i/o exception, log the exception, and allow execute() // to return false, which will prompt a retry. failed = true; e.printStackTrace(); return !failed; } catch (java.lang.InterruptedException ine) { failed = true; ine.printStackTrace(); return !failed; } catch (java.util.zip.DataFormatException dfe) { failed = true; dfe.printStackTrace(); return !failed; } return !failed; }
From source file:com.pavlospt.rxfile.RxFile.java
private static void fastChannelCopy(final ReadableByteChannel src, final WritableByteChannel dest) throws IOException { final ByteBuffer buffer = ByteBuffer.allocateDirect(16 * 1024); while (src.read(buffer) != -1) { buffer.flip();//from www.j ava2 s . com dest.write(buffer); buffer.compact(); } buffer.flip(); while (buffer.hasRemaining()) { dest.write(buffer); } }
From source file:com.ibm.crail.tools.CrailBenchmark.java
void readMultiStream(String filename, int size, int loop, int batch) throws Exception { System.out.println(/* w ww .ja v a 2s .c o m*/ "readMultiStream, filename " + filename + ", size " + size + ", loop " + loop + ", batch " + batch); //warmup ConcurrentLinkedQueue<CrailBuffer> bufferQueue = new ConcurrentLinkedQueue<CrailBuffer>(); for (int i = 0; i < warmup; i++) { CrailBuffer buf = fs.allocateBuffer().limit(size).slice(); bufferQueue.add(buf); } warmUp(filename, warmup, bufferQueue); while (!bufferQueue.isEmpty()) { CrailBuffer buf = bufferQueue.poll(); fs.freeBuffer(buf); } //benchmark System.out.println("starting benchmark..."); fs.getStatistics().reset(); CrailBuffer _buf = null; if (size == CrailConstants.BUFFER_SIZE) { _buf = fs.allocateBuffer(); } else if (size < CrailConstants.BUFFER_SIZE) { CrailBuffer __buf = fs.allocateBuffer(); __buf.clear().limit(size); _buf = __buf.slice(); } else { _buf = OffHeapBuffer.wrap(ByteBuffer.allocateDirect(size)); } ByteBuffer buf = _buf.getByteBuffer(); for (int i = 0; i < loop; i++) { CrailBufferedInputStream multiStream = fs.lookup(filename).get().asMultiFile().getMultiStream(batch); double sumbytes = 0; long _sumbytes = 0; double ops = 0; buf.clear(); long start = System.currentTimeMillis(); int ret = multiStream.read(buf); while (ret >= 0) { sumbytes = sumbytes + ret; long _ret = (long) ret; _sumbytes += _ret; ops = ops + 1.0; buf.clear(); ret = multiStream.read(buf); } long end = System.currentTimeMillis(); multiStream.close(); double executionTime = ((double) (end - start)) / 1000.0; double throughput = 0.0; double latency = 0.0; double sumbits = sumbytes * 8.0; if (executionTime > 0) { throughput = sumbits / executionTime / 1000.0 / 1000.0; latency = 1000000.0 * executionTime / ops; } System.out.println("round " + i + ":"); System.out.println("bytes read " + _sumbytes); System.out.println("execution time " + executionTime); System.out.println("ops " + ops); System.out.println("throughput " + throughput); System.out.println("latency " + latency); } fs.getStatistics().print("close"); }
From source file:com.alvermont.terraj.fracplanet.geom.VertexBufferArray.java
/** * Resize the buffer. This is done by reallocating a new one and copying * data from the old buffer to the new one. This is necessary as buffers * cannot be dynamically resized.//w w w.j a va2 s .co m */ protected void resizeBuffer() { // we can't resize it so we have to allocate a new one and copy the data final int slots = (buffer.capacity() / ELEMENTSIZE); final int newCapacity = buffer.capacity() + (((slots * CAPACITY_PCT_INCREASE) / HUNDRED_PERCENT) * ELEMENTSIZE); final ByteBuffer newBuffer = ByteBuffer.allocateDirect(newCapacity).order(ByteOrder.nativeOrder()); if (log.isDebugEnabled()) { log.debug("Resizing vertex buffer capacity to: " + newBuffer.capacity()); } final FloatBuffer oldVertexBuffer = positionBuffer; final FloatBuffer oldNormalBuffer = normalBuffer; final ByteBuffer oldColourBuffer = colourBuffer; final ByteBuffer oldEmissiveBuffer = emissiveBuffer; this.buffer = newBuffer; sliceAndDice(newCapacity / ELEMENTSIZE); oldVertexBuffer.rewind(); positionBuffer.rewind(); positionBuffer.limit(oldVertexBuffer.limit()); positionBuffer.put(oldVertexBuffer); oldNormalBuffer.rewind(); normalBuffer.rewind(); normalBuffer.limit(oldNormalBuffer.limit()); normalBuffer.put(oldNormalBuffer); oldColourBuffer.rewind(); colourBuffer.rewind(); colourBuffer.limit(oldColourBuffer.limit()); colourBuffer.put(oldColourBuffer); oldEmissiveBuffer.rewind(); emissiveBuffer.rewind(); emissiveBuffer.limit(oldEmissiveBuffer.limit()); emissiveBuffer.put(oldEmissiveBuffer); }
From source file:org.jtrfp.trcl.core.Texture.java
public static ByteBuffer RGBA8FromPNG(BufferedImage image, int startX, int startY, int sizeX, int sizeY) { //int color;/*w ww . j av a 2 s. co m*/ ByteBuffer buf = ByteBuffer.allocateDirect(image.getWidth() * image.getHeight() * 4); final int[] row = new int[image.getWidth()]; for (int y = startY; y < startY + sizeY; y++) { image.getRGB(0, y, image.getWidth(), 1, row, 0, image.getWidth()); for (int color : row) { buf.put((byte) ((color & 0x00FF0000) >> 16)); buf.put((byte) ((color & 0x0000FF00) >> 8)); buf.put((byte) (color & 0x000000FF)); buf.put((byte) ((color & 0xFF000000) >> 24)); } // end for(x) } // end for(y) buf.clear();// Rewind return buf; }