List of usage examples for java.lang Math tan
@HotSpotIntrinsicCandidate public static double tan(double a)
From source file:Main.java
/** * Calculate tan^2(x).//from w ww . j a v a 2s . c o m * * @param x * x * @return tan^2(x) * @since 1.0 */ protected static double tanSquared(double x) { return Math.tan(x) * Math.tan(x); }
From source file:Main.java
public static double[] geoToMercator(double[] g) { double d = g[0] * Math.PI / 180, m = g[1] * Math.PI / 180, l = 6378137, k = 0.0818191908426, f = k * Math.sin(m);// w ww . j av a 2s. c o m double h = Math.tan(Math.PI / 4 + m / 2), j = Math.pow(Math.tan(Math.PI / 4 + Math.asin(f) / 2), k), i = h / j; // return new DoublePoint(Math.round(l * d), Math.round(l * // Math.log(i))); return new double[] { l * d, l * Math.log(i) }; }
From source file:Main.java
private static void setPerspectiveM(float[] m, int offset, double fovy, double aspect, double zNear, double zFar) { Matrix.setIdentityM(m, offset);//from w w w . j av a 2 s . c o m double ymax = zNear * Math.tan(fovy * Math.PI / 360.0); double ymin = -ymax; double xmin = ymin * aspect; double xmax = ymax * aspect; Matrix.frustumM(m, offset, (float) xmin, (float) xmax, (float) ymin, (float) ymax, (float) zNear, (float) zFar); }
From source file:Main.java
public static void setPerspectiveM(float[] m, int offset, double fovy, double aspect, double zNear, double zFar) { Matrix.setIdentityM(m, offset);/*from w w w .j a v a2 s . c om*/ double ymax = zNear * Math.tan(fovy * Math.PI / 360.0); double ymin = -ymax; double xmin = ymin * aspect; double xmax = ymax * aspect; Matrix.frustumM(m, offset, (float) xmin, (float) xmax, (float) ymin, (float) ymax, (float) zNear, (float) zFar); }
From source file:Main.java
public static long[] getTileFromGeo(double lat, double lon, int zoom) { double rLon, rLat, a, k, z; rLon = lon * Math.PI / 180;/*w w w . ja v a 2s . c om*/ rLat = lat * Math.PI / 180; a = 6378137; k = 0.0818191908426; z = Math.pow(Math.tan(Math.PI / 4 + rLat / 2) / (Math.tan(Math.PI / 4 + Math.asin(k * Math.sin(rLat)) / 2)), k); return new long[] { (int) (((20037508.342789 + a * rLon) * 53.5865938 / Math.pow(2, (23 - zoom))) / 256), (int) (((20037508.342789 - a * Math.log(z)) * 53.5865938 / Math.pow(2, (23 - zoom)))) / 256 }; }
From source file:Main.java
public static float tan(float angle) { return (float) Math.tan(angle); }
From source file:Main.java
public static double calculateDistance(double lat1, double lng1, double lat2, double lng2) { int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0;/*from w w w .j a va 2 s.c o m*/ lat2 *= Math.PI / 180.0; lng1 *= Math.PI / 180.0; lng2 *= Math.PI / 180.0; double a = 6378137.0; // WGS84 major axis double b = 6356752.3142; // WGS84 semi-major axis double f = (a - b) / a; double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); double L = lng2 - lng1; double A = 0.0; double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); double cosU1 = Math.cos(U1); double cosU2 = Math.cos(U2); double sinU1 = Math.sin(U1); double sinU2 = Math.sin(U2); double cosU1cosU2 = cosU1 * cosU2; double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); double t1 = cosU2 * sinLambda; double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) { break; } } float distance = (float) (b * A * (sigma - deltaSigma)); return distance; }
From source file:Main.java
/** * Returns the lat/lng as an "Offset Normalized Mercator" pixel coordinate, * this is a coordinate that runs from 0..1 in latitude and longitude with 0,0 being * top left. Normalizing means that this routine can be used at any zoom level and * then multiplied by a power of two to get actual pixel coordinates. *//*ww w . j ava 2 s . com*/ public static Point2D toNormalisedPixelCoords(double lat, double lng) { // first convert to Mercator projection // first convert the lat lon to mercator coordintes. if (lng > 180) { lng -= 360; } lng /= 360; lng += 0.5; lat = 0.5 - ((Math.log(Math.tan((Math.PI / 4) + ((0.5 * Math.PI * lat) / 180))) / Math.PI) / 2.0); return new Point2D.Double(lng, lat); }
From source file:Main.java
public static double cot(double t) { return 1 / Math.tan(t); }
From source file:Main.java
public static double cauchy(double u, double s) { double res = Math.random(); double x = Math.tan(Math.PI * (res - 0.5)); return u + s * x; }