Example usage for java.lang Math cosh

List of usage examples for java.lang Math cosh

Introduction

In this page you can find the example usage for java.lang Math cosh.

Prototype

public static double cosh(double x) 

Source Link

Document

Returns the hyperbolic cosine of a double value.

Usage

From source file:Main.java

public static void main(String[] args) {

    double x = 45.0;
    double y = 180.0;

    // convert them to radians
    x = Math.toRadians(x);//from   www  . ja  v a 2  s  . c  o  m
    y = Math.toRadians(y);

    // output their hyperbolic cosine
    System.out.println("Math.cosh(" + x + ")=" + Math.cosh(x));
    System.out.println("Math.cosh(" + y + ")=" + Math.cosh(y));

}

From source file:net.sf.dsp4j.octave.packages.signal_1_2_0.NCauer.java

public NCauer(double Rp, double Rs, int n) {

    // Cutoff frequency = 1:
    double wp = 1;

    // Stop band edge ws:
    double ws = __ellip_ws(n, Rp, Rs);

    double k = wp / ws;
    double k1 = Math.sqrt(1.0 - Math.pow(k, 2));
    double q0 = (1.0 / 2.0) * ((1.0 - Math.sqrt(k1)) / (1 + Math.sqrt(k1)));
    double q = q0 + 2.0 * Math.pow(q0, 5) + 15.0 * Math.pow(q0, 9) + 150.0 * Math.pow(q0, 13); //%(....)
    double D = (Math.pow(10, 0.1 * Rs) - 1.0) / (Math.pow(10, (0.1 * Rp)) - 1.0);

    //Filter order maybe this, but not used now:
    //n=ceil(log10(16*D)/log10(1/q))

    double l = (1.0 / (2.0 * n)) * Math.log((Math.pow(10, 0.05 * Rp) + 1.0) / (Math.pow(10, 0.05 * Rp) - 1.0));
    double sig01 = 0;
    double sig02 = 0;
    for (int m = 0; m <= 30; m++) {
        sig01 = sig01 + Math.pow((-1), m) * Math.pow(q, (m * (m + 1))) * Math.sinh((2 * m + 1) * l);
    }/*w  w  w . j a  v  a 2 s.com*/
    for (int m = 1; m <= 30; m++) {
        sig02 = sig02 + Math.pow(-1.0, m) * Math.pow(q, (Math.pow(m, 2))) * Math.cosh(2 * m * l);
    }
    double sig0 = Math.abs((2.0 * Math.pow(q, (1.0 / 4.0)) * sig01) / (1.0 + 2.0 * sig02));

    double w = Math.sqrt((1.0 + k * Math.pow(sig0, 2)) * (1.0 + Math.pow(sig0, 2) / k));

    int r;
    if (n % 2 != 0) {
        r = (n - 1) / 2;
    } else {
        r = n / 2;
    }

    double[] wi = new double[r];
    for (int ii = 1; ii <= r; ii++) {
        double mu;
        if (n % 2 != 0) {
            mu = ii;
        } else {
            mu = (double) ii - 0.5;
        }
        double soma1 = 0;
        for (int m = 0; m <= 30; m++) {
            soma1 = soma1 + 2.0 * Math.pow(q, (1.0 / 4.0)) * (Math.pow(-1.0, m) * Math.pow(q, (m * (m + 1)))
                    * Math.sin(((2.0 * m + 1.0) * Math.PI * mu) / n));
        }
        double soma2 = 0;
        for (int m = 1; m <= 30; m++) {
            soma2 = soma2 + 2.0 * (Math.pow(-1.0, m) * Math.pow(q, (Math.pow(m, 2)))
                    * Math.cos((2.0 * m * Math.PI * mu) / n));
        }
        wi[ii - 1] = (soma1 / (1.0 + soma2));
    }

    double[] Vi = new double[wi.length];
    for (int i = 0; i < wi.length; i++) {
        Vi[i] = Math.sqrt((1.0 - (k * (Math.pow(wi[i], 2)))) * (1.0 - (Math.pow(wi[i], 2)) / k));
    }
    double[] A0i = new double[wi.length];
    for (int i = 0; i < wi.length; i++) {
        A0i[i] = 1.0 / (Math.pow(wi[i], 2));
    }
    double[] sqrA0i = new double[wi.length];
    for (int i = 0; i < wi.length; i++) {
        sqrA0i[i] = 1.0 / wi[i];
    }

    double[] B0i = new double[wi.length];
    for (int i = 0; i < wi.length; i++) {
        B0i[i] = (Math.pow((sig0 * Vi[i]), 2) + Math.pow((w * wi[i]), 2))
                / Math.pow((1.0 + Math.pow(sig0, 2) * Math.pow(wi[i], 2)), 2);
    }

    double C01;
    if (wi.length == 0) {
        C01 = 1.0;
    } else {
        C01 = B0i[0] / A0i[0];
        for (int i = 1; i < wi.length; i++) {
            C01 *= B0i[i] / A0i[i];
        }
    }

    //Gain T0:
    if (n % 2 != 0) {
        T0 = sig0 * C01 * Math.sqrt(ws);
    } else {
        T0 = Math.pow(10, (-0.05 * Rp)) * C01;
    }

    //zeros:
    zer = new Complex[sqrA0i.length * 2];
    for (int i = 0; i < sqrA0i.length; i++) {
        zer[i] = Complex.valueOf(0.0, sqrA0i[i]);
        zer[i + sqrA0i.length] = Complex.valueOf(0.0, -sqrA0i[i]);
    }

    //poles:
    pol = new Complex[Vi.length * 2];
    for (int i = 0; i < Vi.length; i++) {
        pol[i] = new Complex(-2.0 * sig0 * Vi[i], 2.0 * wi[i] * w)
                .divide(2.0 * (1 + Math.pow(sig0, 2) * Math.pow(wi[i], 2)));
        pol[i + Vi.length] = new Complex(-2.0 * sig0 * Vi[i], -2.0 * wi[i] * w)
                .divide(2.0 * (1 + Math.pow(sig0, 2) * Math.pow(wi[i], 2)));
    }

    //If n odd, there is a real pole  -sig0:
    if (n % 2 != 0) {
        pol = Arrays.copyOf(pol, pol.length + 1);
        pol[pol.length - 1] = new Complex(-sig0);
    }

    for (int i = 0; i < pol.length; i++) {
        pol[i] = pol[i].multiply(Math.sqrt(ws));
    }
    for (int i = 0; i < zer.length; i++) {
        zer[i] = zer[i].multiply(Math.sqrt(ws));
    }

}

From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java

public static ComplexNumber cos(final ComplexNumber z) {
    Validate.notNull(z, "z");
    final double x = z.getReal();
    final double y = z.getImaginary();
    return new ComplexNumber(Math.cos(x) * Math.cosh(y), -Math.sin(x) * Math.sinh(y));
}

From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java

public static double cosh(final double x) {
    return Math.cosh(x);
}

From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java

public static ComplexNumber cosh(final ComplexNumber z) {
    Validate.notNull(z, "z");
    return new ComplexNumber(Math.cosh(z.getReal()) * Math.cos(z.getImaginary()),
            Math.sinh(z.getReal()) * Math.sin(z.getImaginary()));
}

From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java

public static ComplexNumber sin(final ComplexNumber z) {
    Validate.notNull(z, "z");
    final double x = z.getReal();
    final double y = z.getImaginary();
    return new ComplexNumber(Math.sin(x) * Math.cosh(y), Math.cos(x) * Math.sinh(y));
}

From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java

public static ComplexNumber sinh(final ComplexNumber z) {
    Validate.notNull(z, "z");
    return new ComplexNumber(Math.sinh(z.getReal()) * Math.cos(z.getImaginary()),
            Math.cosh(z.getReal()) * Math.sin(z.getImaginary()));
}

From source file:com.duy.pascal.interperter.libraries.math.MathLib.java

@PascalMethod(description = "")
public double Cosh(double d) {
    return Math.cosh(d);
}

From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java

public static Number funcSin(MutableNumber out, Number x) {
    return out.set(Math.sin(x.r()) * Math.cosh(x.i()), +Math.cos(x.r()) * Math.sinh(x.i()));
}

From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java

public static Number funcCos(MutableNumber out, Number x) {
    return out.set(Math.cos(x.r()) * Math.cosh(x.i()), -Math.sin(x.r()) * Math.sinh(x.i()));
}