List of usage examples for java.lang Math atan2
@HotSpotIntrinsicCandidate public static double atan2(double y, double x)
From source file:org.gearvrf.controls.util.VRSamplesTouchPadGesturesDetector.java
@Override public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY) { if (mDetector == null) { return false; }//from w w w. j a va 2 s.co m double distance = Math.sqrt(Math.pow(e2.getX() - e1.getX(), 2) + Math.pow(e2.getY() - e1.getY(), 2)); saveSwipeDistanceValue((float) distance); if (distance > SWIPE_MIN_DISTANCE) { try { double deltaY = e2.getY() - e1.getY(); double deltaX = e2.getX() - e1.getX(); double angle = Math.toDegrees(Math.atan2(deltaY, deltaX)) + 180 + 45; if (angle > 360) angle -= 360; if (angle < 90) { return gestureListener.onSwipe(e1, SwipeDirection.Forward, velocityX, velocityY); } else if (angle < 180) { return gestureListener.onSwipe(e1, SwipeDirection.Up, velocityX, velocityY); } else if (angle < 270) { return gestureListener.onSwipe(e1, SwipeDirection.Backward, velocityX, velocityY); } else { return gestureListener.onSwipe(e1, SwipeDirection.Down, velocityX, velocityY); } } catch (Exception e) { // Ignore } } else if (distance >= ONTAP_MIN_DISTANCE) { /* * The gesture listener filters out dirty taps that look like swipes * altogether. This reduces usability as it's hard to get a clean * tap on the tracker */ gestureListener.onSingleTap(e1); return true; } return false; }
From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java
public static Number funcPow(MutableNumber out, Number x, double e) { double d = Math.pow(FastMath.hypot(x.r(), x.i()), e); double f = Math.atan2(x.i(), x.r()) * e; return out.set(d * Math.cos(f), d * Math.sin(f)); }
From source file:org.renjin.primitives.MathGroup.java
@Deferrable @Internal//from w ww . ja v a 2s .co m @DataParallel(value = PreserveAttributeStyle.ALL, passNA = true) public static double atan2(double y, double x) { return Math.atan2(y, x); }
From source file:de.biomedical_imaging.traj.math.TrajectorySplineFitLegacy.java
/** * Calculates a spline to a trajectory. Attention: The spline is fitted through a rotated version of the trajectory. * To fit the spline the trajectory is rotated into its main direction. You can access this rotated trajectory by * {@link #getRotatedTrajectory() getRotatedTrajectory}. * @return The fitted spline/*from w w w .j a v a 2 s.c om*/ */ public PolynomialSplineFunction calculateSpline() { /* * 1.Calculate the minimum bounding rectangle */ ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>(); for (int i = 0; i < t.size(); i++) { Point2D.Double p = new Point2D.Double(); p.setLocation(t.get(i).x, t.get(i).y); points.add(p); } Point2D.Double[] rect = null; try { rect = RotatingCalipers.getMinimumBoundingRectangle(points); } catch (IllegalArgumentException e) { } catch (EmptyStackException e) { } /* * 1.1 Rotate that the major axis is parallel with the xaxis */ Point2D.Double majorDirection = null; Point2D.Double p1 = rect[2]; //top left Point2D.Double p2 = p1.distance(rect[1]) > p1.distance(rect[3]) ? rect[1] : rect[3]; //Point to long side Point2D.Double p3 = p1.distance(rect[1]) > p1.distance(rect[3]) ? rect[3] : rect[1]; //Point to short side majorDirection = new Point2D.Double(p2.x - p1.x, p2.y - p1.y); double width = p1.distance(p2); double inRad = -1 * Math.atan2(majorDirection.y, majorDirection.x); boolean doTransform = (Math.abs(Math.abs(inRad) - Math.PI) > 0.001); if (doTransform) { angleRotated = inRad; for (int i = 0; i < t.size(); i++) { double x = t.get(i).x; double y = t.get(i).y; double newX = x * Math.cos(inRad) - y * Math.sin(inRad); double newY = x * Math.sin(inRad) + y * Math.cos(inRad); rotatedTrajectory.add(newX, newY, 0); points.get(i).setLocation(newX, newY); } for (int i = 0; i < rect.length; i++) { rect[i].setLocation(rect[i].x * Math.cos(inRad) - rect[i].y * Math.sin(inRad), rect[i].x * Math.sin(inRad) + rect[i].y * Math.cos(inRad)); } p1 = rect[2]; //top left p2 = p1.distance(rect[1]) > p1.distance(rect[3]) ? rect[1] : rect[3]; //Point to long side p3 = p1.distance(rect[1]) > p1.distance(rect[3]) ? rect[3] : rect[1]; //Point to short side } else { angleRotated = 0; rotatedTrajectory = t; } /* * 2. Divide the rectangle in n equal segments * 2.1 Calculate line in main direction * 2.2 Project the points in onto this line * 2.3 Calculate the distance between the start of the line and the projected point * 2.4 Assign point to segment according to distance of (2.3) */ List<List<Point2D.Double>> pointsInSegments = null; boolean allSegmentsContainingAtLeastTwoPoints = true; do { allSegmentsContainingAtLeastTwoPoints = true; double segmentWidth = p1.distance(p2) / nSegments; pointsInSegments = new ArrayList<List<Point2D.Double>>(nSegments); for (int i = 0; i < nSegments; i++) { pointsInSegments.add(new ArrayList<Point2D.Double>()); } for (int i = 0; i < points.size(); i++) { Point2D.Double projPoint = projectPointToLine(p1, p2, points.get(i)); int index = (int) (p1.distance(projPoint) / segmentWidth); if (index > (nSegments - 1)) { index = (nSegments - 1); } pointsInSegments.get(index).add(points.get(i)); } for (int i = 0; i < pointsInSegments.size(); i++) { if (pointsInSegments.get(i).size() < 2) { if (nSegments > 2) { nSegments--; i = pointsInSegments.size(); allSegmentsContainingAtLeastTwoPoints = false; } } } } while (allSegmentsContainingAtLeastTwoPoints == false); /* * 3. Calculate the mean standard deviation over each segment: <s> */ Point2D.Double eMajorP1 = new Point2D.Double(p1.x - (p3.x - p1.x) / 2.0, p1.y - (p3.y - p1.y) / 2.0); Point2D.Double eMajorP2 = new Point2D.Double(p2.x - (p3.x - p1.x) / 2.0, p2.y - (p3.y - p1.y) / 2.0); double sumMean = 0; int Nsum = 0; for (int i = 0; i < nSegments; i++) { StandardDeviation sd = new StandardDeviation(); double[] distances = new double[pointsInSegments.get(i).size()]; for (int j = 0; j < pointsInSegments.get(i).size(); j++) { int factor = 1; if (isLeft(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j))) { factor = -1; } distances[j] = factor * distancePointLine(eMajorP1, eMajorP2, pointsInSegments.get(i).get(j)); } if (distances.length > 0) { sd.setData(distances); sumMean += sd.evaluate(); Nsum++; } } double s = sumMean / Nsum; if (s < 0.000000000001) { s = width / nSegments; } /* * 4. Build a kd-tree */ KDTree<Point2D.Double> kdtree = new KDTree<Point2D.Double>(2); for (int i = 0; i < points.size(); i++) { try { //To ensure that all points have a different key, add small random number kdtree.insert(new double[] { points.get(i).x, points.get(i).y }, points.get(i)); } catch (KeySizeException e) { e.printStackTrace(); } catch (KeyDuplicateException e) { //Do nothing! It is not important } } /* * 5. Using the first point f in trajectory and calculate the center of mass * of all points around f (radius: 3*<s>)) */ List<Point2D.Double> near = null; Point2D.Double first = minDistancePointToLine(p1, p3, points); double r1 = 3 * s; try { near = kdtree.nearestEuclidean(new double[] { first.x, first.y }, r1); } catch (KeySizeException e) { e.printStackTrace(); } double cx = 0; double cy = 0; for (int i = 0; i < near.size(); i++) { cx += near.get(i).x; cy += near.get(i).y; } cx /= near.size(); cy /= near.size(); splineSupportPoints = new ArrayList<Point2D.Double>(); splineSupportPoints.add(new Point2D.Double(cx, cy)); /* * 6. The second point is determined by finding the center-of-mass of particles in the p/2 radian * section of an annulus, r1 < r < 2r1, that is directed toward the angle with the highest number * of particles within p/2 radians. * 7. This second point is then used as the center of the annulus for choosing the third point, and the process is repeated (6. & 7.). */ /* * 6.1 Find all points in the annolous */ /* * 6.2 Write each point in a coordinate system centered at the center of the sphere, calculate direction and * check if it in the allowed bounds */ int nCircleSegments = 100; double deltaRad = 2 * Math.PI / nCircleSegments; boolean stop = false; int minN = 7; double tempr1 = r1; double allowedDeltaDirection = 0.5 * Math.PI; while (stop == false) { List<Point2D.Double> nearestr1 = null; List<Point2D.Double> nearest2xr1 = null; try { nearestr1 = kdtree .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y }, tempr1); nearest2xr1 = kdtree .nearestEuclidean(new double[] { splineSupportPoints.get(splineSupportPoints.size() - 1).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y }, 2 * tempr1); } catch (KeySizeException e) { // TODO Auto-generated catch block e.printStackTrace(); } nearest2xr1.removeAll(nearestr1); double lThreshRad = 0; double hThreshRad = Math.PI / 2; double stopThresh = 2 * Math.PI; if (splineSupportPoints.size() > 1) { double directionInRad = Math.atan2( splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y, splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x) + Math.PI; lThreshRad = directionInRad - allowedDeltaDirection / 2 - Math.PI / 4; if (lThreshRad < 0) { lThreshRad = 2 * Math.PI + lThreshRad; } if (lThreshRad > 2 * Math.PI) { lThreshRad = lThreshRad - 2 * Math.PI; } hThreshRad = directionInRad + allowedDeltaDirection / 2 + Math.PI / 4; if (hThreshRad < 0) { hThreshRad = 2 * Math.PI + hThreshRad; } if (hThreshRad > 2 * Math.PI) { hThreshRad = hThreshRad - 2 * Math.PI; } stopThresh = directionInRad + allowedDeltaDirection / 2 - Math.PI / 4; if (stopThresh > 2 * Math.PI) { stopThresh = stopThresh - 2 * Math.PI; } } double newCx = 0; double newCy = 0; int newCN = 0; int candN = 0; //Find center with highest density of points double lastDist = 0; double newDist = 0; do { lastDist = Math.min(Math.abs(lThreshRad - stopThresh), 2 * Math.PI - Math.abs(lThreshRad - stopThresh)); candN = 0; double candCx = 0; double candCy = 0; for (int i = 0; i < nearest2xr1.size(); i++) { Point2D.Double centerOfCircle = splineSupportPoints.get(splineSupportPoints.size() - 1); Vector2d relativeToCircle = new Vector2d(nearest2xr1.get(i).x - centerOfCircle.x, nearest2xr1.get(i).y - centerOfCircle.y); relativeToCircle.normalize(); double angleInRadians = Math.atan2(relativeToCircle.y, relativeToCircle.x) + Math.PI; if (lThreshRad < hThreshRad) { if (angleInRadians > lThreshRad && angleInRadians < hThreshRad) { candCx += nearest2xr1.get(i).x; candCy += nearest2xr1.get(i).y; candN++; } } else { if (angleInRadians > lThreshRad || angleInRadians < hThreshRad) { candCx += nearest2xr1.get(i).x; candCy += nearest2xr1.get(i).y; candN++; } } } if (candN > 0 && candN > newCN) { candCx /= candN; candCy /= candN; newCx = candCx; newCy = candCy; newCN = candN; } lThreshRad += deltaRad; hThreshRad += deltaRad; if (lThreshRad > 2 * Math.PI) { lThreshRad = lThreshRad - 2 * Math.PI; } if (hThreshRad > 2 * Math.PI) { hThreshRad = hThreshRad - 2 * Math.PI; } newDist = Math.min(Math.abs(lThreshRad - stopThresh), 2 * Math.PI - Math.abs(lThreshRad - stopThresh)); } while ((newDist - lastDist) > 0); //Check if the new center is valid if (splineSupportPoints.size() > 1) { double currentDirectionInRad = Math.atan2( splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y, splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x) + Math.PI; double candDirectionInRad = Math.atan2( newCy - splineSupportPoints.get(splineSupportPoints.size() - 1).y, newCx - splineSupportPoints.get(splineSupportPoints.size() - 1).x) + Math.PI; double dDir = Math.max(currentDirectionInRad, candDirectionInRad) - Math.min(currentDirectionInRad, candDirectionInRad); if (dDir > 2 * Math.PI) { dDir = 2 * Math.PI - dDir; } if (dDir > allowedDeltaDirection) { stop = true; } } boolean enoughPoints = (newCN < minN); boolean isNormalRadius = Math.abs(tempr1 - r1) < Math.pow(10, -18); boolean isExtendedRadius = Math.abs(tempr1 - 3 * r1) < Math.pow(10, -18); if (enoughPoints && isNormalRadius) { //Not enough points, extend search radius tempr1 = 3 * r1; } else if (enoughPoints && isExtendedRadius) { //Despite radius extension: Not enough points! stop = true; } else if (stop == false) { splineSupportPoints.add(new Point2D.Double(newCx, newCy)); tempr1 = r1; } } //Sort Collections.sort(splineSupportPoints, new Comparator<Point2D.Double>() { public int compare(Point2D.Double o1, Point2D.Double o2) { if (o1.x < o2.x) { return -1; } if (o1.x > o2.x) { return 1; } return 0; } }); //Add endpoints if (splineSupportPoints.size() > 1) { Vector2d start = new Vector2d(splineSupportPoints.get(0).x - splineSupportPoints.get(1).x, splineSupportPoints.get(0).y - splineSupportPoints.get(1).y); start.normalize(); start.scale(r1 * 8); splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + start.x, splineSupportPoints.get(0).y + start.y)); Vector2d end = new Vector2d( splineSupportPoints.get(splineSupportPoints.size() - 1).x - splineSupportPoints.get(splineSupportPoints.size() - 2).x, splineSupportPoints.get(splineSupportPoints.size() - 1).y - splineSupportPoints.get(splineSupportPoints.size() - 2).y); end.normalize(); end.scale(r1 * 6); splineSupportPoints .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + end.x, splineSupportPoints.get(splineSupportPoints.size() - 1).y + end.y)); } else { Vector2d majordir = new Vector2d(-1, 0); majordir.normalize(); majordir.scale(r1 * 8); splineSupportPoints.add(0, new Point2D.Double(splineSupportPoints.get(0).x + majordir.x, splineSupportPoints.get(0).y + majordir.y)); majordir.scale(-1); splineSupportPoints .add(new Point2D.Double(splineSupportPoints.get(splineSupportPoints.size() - 1).x + majordir.x, splineSupportPoints.get(splineSupportPoints.size() - 1).y + majordir.y)); } //Interpolate spline double[] supX = new double[splineSupportPoints.size()]; double[] supY = new double[splineSupportPoints.size()]; for (int i = 0; i < splineSupportPoints.size(); i++) { supX[i] = splineSupportPoints.get(i).x; supY[i] = splineSupportPoints.get(i).y; } SplineInterpolator sIinter = new SplineInterpolator(); spline = sIinter.interpolate(supX, supY); return spline; }
From source file:com.nextgis.mobile.forms.CompassFragment.java
public boolean onTouch(View v, MotionEvent event) { switch (event.getAction()) { case MotionEvent.ACTION_DOWN: downX = event.getX();//from w ww .ja v a 2 s . c o m downY = event.getY(); return true; case MotionEvent.ACTION_MOVE: upX = event.getX(); upY = event.getY(); double downR = Math.atan2(v.getHeight() / 2 - downY, downX - v.getWidth() / 2); int angle1 = (int) Math.toDegrees(downR); double upR = Math.atan2(v.getHeight() / 2 - upY, upX - v.getWidth() / 2); int angle2 = (int) Math.toDegrees(upR); this.rotateCompass(angle1 - angle2); if (vibrationOn) { vibrator.vibrate(5); } // update starting point for next move event downX = upX; downY = upY; return true; } return false; }
From source file:com.diozero.sandpit.imu.invensense.MPU9150DriverMqttPublisher.java
public void run() { try (MPU9150Driver mpu = new MPU9150Driver(I2CConstants.BUS_1, I2CConstants.ADDR_SIZE_7, MPU9150Constants.I2C_CLOCK_FREQUENCY_FAST)) { mpuInit(mpu);// w w w.j av a 2s . co m mqttInit(); System.err.println("Ready."); do { ImuData imu_data = update(mpu); System.out.print("Got IMU data: compass=[" + imu_data.getCompass() + "], temp=" + imu_data.getTemperature() + ", gyro=[" + imu_data.getGyro() + "], accel=[" + imu_data.getAccel() + "], quat=[" + imu_data.getQuaternion().getQ0() + ", " + imu_data.getQuaternion().getQ1() + ", " + imu_data.getQuaternion().getQ2() + ", " + imu_data.getQuaternion().getQ3() + "], timestamp=" + imu_data.getTimestamp() + ", "); Quaternion q = imu_data.getQuaternion(); //double[] ypr = q.toEuler(); //double[] ypr = quat.getYawPitchRoll(); Rotation r = new Rotation(q.getQ0(), q.getQ1(), q.getQ2(), q.getQ3(), true); double[] ypr = null; try { ypr = r.getAngles(RotationOrder.XYZ, RotationConvention.VECTOR_OPERATOR); } catch (CardanEulerSingularityException e) { ypr = new double[] { 2 * Math.atan2(q.getQ1(), q.getQ0()), Math.PI / 2, 0 }; System.out.print("Singularity detected, "); } Logger.info("ypr=[{}, {}, {}]", Double.valueOf(ypr[0]), Double.valueOf(ypr[1]), Double.valueOf(ypr[2])); mqttPublish(imu_data, ypr); } while (true); } catch (RuntimeIOException ioe) { Logger.error(ioe, "Error: {}", ioe); } catch (MqttException me) { Logger.error(me, "Error: {}", me); } finally { try { mqttClient.disconnect(); } catch (Exception e) { } } }
From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java
public static Number funcSqrt(MutableNumber out, Number x) { double d = Math.sqrt(FastMath.hypot(x.r(), x.i())); double f = Math.atan2(x.i(), x.r()) * 0.5; return out.set(d * Math.cos(f), d * Math.sin(f)); }
From source file:org.gearvrf.keyboard.util.VRSamplesTouchPadGesturesDetector.java
@Override public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY) { Log.d(VRSamplesTouchPadGesturesDetector.DEBUG_TAG, "onFling()"); if (mDetector == null) { return false; }//from www .java 2s .c om double distance = Math.sqrt(Math.pow(e2.getX() - e1.getX(), 2) + Math.pow(e2.getY() - e1.getY(), 2)); saveSwipeDistanceValue((float) distance); if (distance > SWIPE_MIN_DISTANCE) { try { double deltaY = e2.getY() - e1.getY(); double deltaX = e2.getX() - e1.getX(); double angle = Math.toDegrees(Math.atan2(deltaY, deltaX)) + 180 + 45; if (angle > 360) angle -= 360; if (angle < 90) { return gestureListener.onSwipe(e1, SwipeDirection.Forward, velocityX, velocityY); } else if (angle < 180) { return gestureListener.onSwipe(e1, SwipeDirection.Up, velocityX, velocityY); } else if (angle < 270) { return gestureListener.onSwipe(e1, SwipeDirection.Backward, velocityX, velocityY); } else { return gestureListener.onSwipe(e1, SwipeDirection.Down, velocityX, velocityY); } } catch (Exception e) { // Ignore } } else if (distance >= ONTAP_MIN_DISTANCE) { /* * The gesture listener filters out dirty taps that look like swipes * altogether. This reduces usability as it's hard to get a clean * tap on the tracker */ gestureListener.onSingleTap(e1); return true; } return false; }
From source file:com.creativeongreen.imageeffects.MainActivity.java
@Override protected void onCreate(Bundle savedInstanceState) { if (DEBUG)/*from w w w . j a v a 2 s.c o m*/ Log.d(LOG_TAG, "onCreate()"); super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); mNavigationDrawerFragment = (NavigationDrawerFragment) getSupportFragmentManager() .findFragmentById(R.id.navigation_drawer); mTitle = getTitle(); // Set up the drawer. mNavigationDrawerFragment.setUp(R.id.navigation_drawer, (DrawerLayout) findViewById(R.id.drawer_layout)); bmImageSrc = getBitmapFromAsset(this, "image_src_1.jpg"); bmImageEffected = bmImageSrc; int w = 10; int h = 10; double radius = 2; double cx = w / 2; // bmImage.getWidth() / 2; double cy = h / 2; // bmImage.getHeight() / 2; for (int i = 0; i < w; i++) { Log.d(LOG_TAG, "----- i=" + i); for (int j = 0; j < h; j++) { double r = Math.sqrt(Math.pow(i - cx, 2) + Math.pow(j - cy, 2)); // compute angle atan2(y, x) in range (-PI..PI] n polar coordinate system double a = Math.atan2(j - cy, i - cx); // rn = r ^ k, k=1..2 double rn = Math.pow(r, radius);// / 10.0) / (radius); // compute mapping point and then shift to center point int kx = (int) (rn * Math.cos(a) + cx); int ky = (int) (rn * Math.sin(a) + cy); // if (i == 0) Log.d(LOG_TAG, "(" + i + "," + j + ") -> (" + kx * w / rn + "," + ky * h / rn + ")"); } } }
From source file:com.dat255.ht13.grupp23.activites.MapController.java
public double calculateDistance(Point anotherPosition, Point currentPosition) { LatLng latlng1 = new LatLng(anotherPosition.getX(), anotherPosition.getX()); double lat1 = latlng1.latitude; double lng1 = latlng1.longitude; LatLng latlng2 = new LatLng(currentPosition.getX(), currentPosition.getX()); double lat2 = latlng2.latitude; double lng2 = latlng2.longitude; double earthRadius = 3958.75; double dLat = Math.toRadians(lat2 - lat1); double dLng = Math.toRadians(lng2 - lng1); double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(Math.toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) * Math.sin(dLng / 2) * Math.sin(dLng / 2); double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); double dist = earthRadius * c; double meterConversion = 1609; return (dist * meterConversion); }