List of usage examples for java.lang Double NaN
double NaN
To view the source code for java.lang Double NaN.
Click Source Link
From source file:org.sloth.validation.CoordinateValidatorTest.java
@Test public void testEmptyLongitude() { CoordinateValidator cv = new CoordinateValidator(); Coordinate c = new Coordinate(); c.setLongitude(Double.NaN); Errors errors = new BeanPropertyBindingResult(c, "coordinate"); cv.validate(c, errors);/* w ww. j av a 2s . co m*/ assertTrue(errors.hasErrors()); assertEquals(COORDINATE.EMPTY_LONGITUDE, errors.getFieldError("longitude").getCode()); }
From source file:com.clust4j.algo.preprocess.ImputationTests.java
@Test public void testMeanImputation() { final double[][] d = new double[][] { new double[] { Double.NaN, 1, 2 }, new double[] { 1, Double.NaN, 3 }, new double[] { 2, 2, 1 } }; final MeanImputation mean = new MeanImputation(new MeanImputationPlanner().setVerbose(true)); final double[][] imputed = mean.transform(d); final double[][] res = new double[][] { new double[] { 1.5, 1, 2 }, new double[] { 1, 1.5, 3 }, new double[] { 2, 2, 1 } }; assertTrue(MatUtils.equalsExactly(res, imputed)); System.out.println();/* www. ja va 2 s . com*/ }
From source file:de.hs.mannheim.modUro.diagram.JCellcycletimeDiagram.java
private XYDataset createDataset(List<String> cellTypes, List<CellCycletimeEntry> cycletimesList) { XYSeriesCollection dataset = new XYSeriesCollection(); for (String cellType : cellTypes) { XYSeries xySerie = new XYSeries(cellType); for (CellCycletimeEntry e : cycletimesList) { double x = e.time; double y = 0; if (e.meanValues.containsKey(cellType)) { y = (double) e.meanValues.get(cellType); }/*w ww .j ava2s. c o m*/ if (y != Double.NaN) { xySerie.add(x, y); } } dataset.addSeries(xySerie); } return dataset; }
From source file:com.itemanalysis.psychometrics.polycor.PearsonCorrelation.java
/** * Correct correlation for spuriousness. This method assumes that * the test item is Y and the test score is X. Used for the * point-biserial and biserial correlation in an item analysis. * * @return correlation corrected for spuriousness *//*w ww. j a v a 2 s .com*/ public Double correctedValue() { double testSd = sdX.getResult(); double itemSd = sdY.getResult(); double rOld = this.value(); double denom = Math.sqrt(itemSd * itemSd + testSd * testSd - 2 * rOld * itemSd * testSd); if (denom == 0.0) return Double.NaN; return (rOld * testSd - itemSd) / denom; }
From source file:mase.spec.SilhouetteDistanceCalculator.java
@Override public double[][] computeDistances(List<BehaviourResult>[] list, EvolutionState state) { List<BehaviourResult> all = new ArrayList<>(); int[][] alloc = new int[list.length][]; int index = 0; for (int i = 0; i < list.length; i++) { alloc[i] = new int[list[i].size()]; all.addAll(list[i]);/*from ww w .ja v a2 s .c om*/ for (int j = 0; j < list[i].size(); j++) { alloc[i][j] = index++; } } RealMatrix behavDist = null; if (!all.isEmpty()) { if (executor != null) { behavDist = computeDistanceMatrixParallel(all); } else { behavDist = computeDistanceMatrix(all); } } double[][] mpDist = new double[list.length][list.length]; for (int i = 0; i < mpDist.length; i++) { for (int j = 0; j < mpDist.length; j++) { if (i == j) { mpDist[i][j] = Double.NaN; } else if (list[i].isEmpty() || list[j].isEmpty()) { mpDist[i][j] = Double.POSITIVE_INFINITY; } else if (i < j) { double wi = silhouetteWidth(alloc[i], alloc[j], behavDist, state); double wj = silhouetteWidth(alloc[j], alloc[i], behavDist, state); mpDist[i][j] = (wi + wj) / 2; } else { mpDist[i][j] = mpDist[j][i]; } } } return mpDist; }
From source file:net.aksingh.owmjapis.AbstractForecast.java
AbstractForecast() { super(); this.message = Double.NaN; this.forecastCount = 0; this.city = null; }
From source file:de.bund.bfr.math.LodFunction.java
@Override public double value(double[] point) { double sd = Double.NaN; for (int ip = 0; ip < nParams; ip++) { if (parameters.get(ip).equals(sdParam)) { sd = Math.abs(point[ip]); } else {// w w w.j a v a 2 s . c o m parser.setVarValue(parameters.get(ip), point[ip]); } } if (sd == 0.0) { return Double.NaN; } double logLikelihood = 0.0; for (int iv = 0; iv < nValues; iv++) { for (Map.Entry<String, List<Double>> entry : variableValues.entrySet()) { parser.setVarValue(entry.getKey(), entry.getValue().get(iv)); } try { double value = parser.evaluate(function); if (!Double.isFinite(value)) { return Double.NaN; } NormalDistribution normDist = new NormalDistribution(value, sd); logLikelihood += targetValues.get(iv) > levelOfDetection ? Math.log(normDist.density(targetValues.get(iv))) : Math.log(normDist.cumulativeProbability(levelOfDetection)); } catch (ParseException e) { e.printStackTrace(); return Double.NaN; } } return logLikelihood; }
From source file:de.thkwalter.et.betriebspunkt.Betriebspunkt.java
/** * Dieser Konstruktor erzeugt einen Betriebspunkt und initialisiert alle reellwertigen Gren mit {@link Double#NaN}. */// ww w. j av a2s . c om public Betriebspunkt() { // Alle reellwertigen Gren werden mit Double.NaN initialisiert. this.u_LL = Double.NaN; this.i_L = Double.NaN; this.cosPhi = Double.NaN; this.p_el = Double.NaN; this.p_s = Double.NaN; // Der komplexe Zeiger des Stnderstroms (in A) wird initialisiert. this.z_i_s = Complex.NaN; }
From source file:at.alladin.rmbt.statisticServer.StatisticParameters.java
public StatisticParameters(String defaultLang, String params) { String _lang = defaultLang;/* w w w.j ava 2s. co m*/ float _quantile = 0.5f; // median is default quantile int _duration = 90; int _maxDevices = 100; String _type = "mobile"; String _networkTypeGroup = null; double _accuracy = -1; String _country = null; if (params != null && !params.isEmpty()) // try parse the string to a JSON object try { final JSONObject request = new JSONObject(params); _lang = request.optString("language", _lang); final double __quantile = request.optDouble("quantile", Double.NaN); if (__quantile >= 0 && __quantile <= 1) _quantile = (float) __quantile; final int __months = request.optInt("months", 0); // obsolete, old format (now in days) if (__months > 0) _duration = __months * 30; final int __duration = request.optInt("duration", 0); if (__duration > 0) _duration = __duration; final int __maxDevices = request.optInt("max_devices", 0); if (__maxDevices > 0) _maxDevices = __maxDevices; final String __type = request.optString("type", null); if (__type != null) _type = __type; final String __networkTypeGroup = request.optString("network_type_group", null); if (__networkTypeGroup != null && !__networkTypeGroup.equalsIgnoreCase("all")) _networkTypeGroup = __networkTypeGroup; final double __accuracy = request.optDouble("location_accuracy", -1); if (__accuracy != -1) _accuracy = __accuracy; final String __country = request.optString("country", null); if (__country != null && __country.length() == 2) _country = __country; } catch (final JSONException e) { } lang = _lang; quantile = _quantile; duration = _duration; maxDevices = _maxDevices; type = _type; networkTypeGroup = _networkTypeGroup; accuracy = _accuracy; country = _country; }
From source file:com.mapr.synth.samplers.GammaSampler.java
@SuppressWarnings("UnusedDeclaration") public void setRate(double rate) { this.beta = 1 / rate; dof = Double.NaN; scale = Double.NaN;//from w w w .j a v a 2 s .co m init(); }