Example usage for java.lang Double longBitsToDouble

List of usage examples for java.lang Double longBitsToDouble

Introduction

In this page you can find the example usage for java.lang Double longBitsToDouble.

Prototype

@HotSpotIntrinsicCandidate
public static native double longBitsToDouble(long bits);

Source Link

Document

Returns the double value corresponding to a given bit representation.

Usage

From source file:com.nextgis.mobile.fragment.MapFragment.java

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) {
    View view = inflater.inflate(R.layout.fragment_map, container, false);

    mCurrentLocationOverlay = new CurrentLocationOverlay(mActivity, mMap);
    mCurrentLocationOverlay.setStandingMarker(R.mipmap.ic_location_standing);
    mCurrentLocationOverlay.setMovingMarker(R.mipmap.ic_location_moving);
    mCurrentLocationOverlay.setAutopanningEnabled(true);

    mCurrentTrackOverlay = new CurrentTrackOverlay(mActivity, mMap);
    mRulerOverlay = new RulerOverlay(mActivity, mMap);
    mUndoRedoOverlay = new UndoRedoOverlay(mActivity, mMap);

    mMap.addOverlay(mCurrentTrackOverlay);
    mMap.addOverlay(mCurrentLocationOverlay);
    mMap.addOverlay(mEditLayerOverlay);/* ww w.j  a  v  a  2 s.c o m*/
    mMap.addOverlay(mUndoRedoOverlay);
    mMap.addOverlay(mRulerOverlay);

    //search relative view of map, if not found - add it
    mMapRelativeLayout = (RelativeLayout) view.findViewById(R.id.maprl);
    if (mMapRelativeLayout != null) {
        mMapRelativeLayout.addView(mMap, 0, new RelativeLayout.LayoutParams(
                RelativeLayout.LayoutParams.MATCH_PARENT, RelativeLayout.LayoutParams.MATCH_PARENT));
    }

    float mapZoom;
    try {
        mapZoom = mPreferences.getFloat(SettingsConstantsUI.KEY_PREF_ZOOM_LEVEL, mMap.getMinZoom());
    } catch (ClassCastException e) {
        mapZoom = mMap.getMinZoom();
    }

    double mapScrollX;
    double mapScrollY;
    try {
        mapScrollX = Double.longBitsToDouble(mPreferences.getLong(SettingsConstantsUI.KEY_PREF_SCROLL_X, 0));
        mapScrollY = Double.longBitsToDouble(mPreferences.getLong(SettingsConstantsUI.KEY_PREF_SCROLL_Y, 0));
    } catch (ClassCastException e) {
        mapScrollX = 0;
        mapScrollY = 0;
    }
    mMap.setZoomAndCenter(mapZoom, new GeoPoint(mapScrollX, mapScrollY));

    mMainButton = view.findViewById(R.id.multiple_actions);
    mAddPointButton = (FloatingActionButton) view.findViewById(R.id.add_point_by_tap);
    mAddPointButton.setOnClickListener(this);

    View addCurrentLocation = view.findViewById(R.id.add_current_location);
    addCurrentLocation.setOnClickListener(this);

    mAddNewGeometry = (FloatingActionButton) view.findViewById(R.id.add_new_geometry);
    mAddNewGeometry.setOnClickListener(this);
    mRuler = (FloatingActionButton) view.findViewById(R.id.action_ruler);
    mRuler.setOnClickListener(this);

    View addGeometryByWalk = view.findViewById(R.id.add_geometry_by_walk);
    addGeometryByWalk.setOnClickListener(this);

    mivZoomIn = (FloatingActionButton) view.findViewById(R.id.action_zoom_in);
    mivZoomIn.setOnClickListener(this);

    mivZoomOut = (FloatingActionButton) view.findViewById(R.id.action_zoom_out);
    mivZoomOut.setOnClickListener(this);

    mStatusPanel = (FrameLayout) view.findViewById(R.id.fl_status_panel);
    mScaleRuler = (ImageView) view.findViewById(R.id.iv_ruler);
    mScaleRulerText = (TextView) view.findViewById(R.id.tv_ruler);
    mScaleRulerText.setText(getRulerText());
    mScaleRulerLayout = (LinearLayout) view.findViewById(R.id.ll_ruler);
    drawScaleRuler();

    return view;
}

From source file:org.renjin.parser.NumericLiterals.java

/**
 * Finds the closest double-precision floating point number to the given decimal string, parsed by
 * {@link #parseDoubleDecimal(CharSequence, int, int, int, char)} above.
 *
 * <p>This implementation is based on OpenJDK's {@code com.sun.misc.FloatingDecimal.ASCIIToBinaryBuffer.doubleValue()},
 * but included here nearly verbatim to avoid a dependency on an internal SDK class. The original code
 * is copyright 1996, 2013, Oracle and/or its affiliates and licensed under the GPL v2.</p></p>
 *
 * @param in the input string/*  ww  w  .  ja  v  a2 s .c o m*/
 * @param sign the sign, -1 or +1, parsed above in {@link #parseDouble(CharSequence, int, int, char, boolean)}
 * @param startIndex the index at which to start parsing
 * @param endIndex the index, exclusive, at which to stop parsing
 * @param decimalPoint the decimal point character to use. Generally either '.' or ','
 * @return the number as a {@code double}, or {@code NA} if the string is malformatted.
 */
public static double doubleValue(boolean isNegative, int decExponent, char[] digits, int nDigits) {
    int kDigits = Math.min(nDigits, MAX_DECIMAL_DIGITS + 1);
    //
    // convert the lead kDigits to a long integer.
    //
    // (special performance hack: start to do it using int)
    int iValue = (int) digits[0] - (int) '0';
    int iDigits = Math.min(kDigits, INT_DECIMAL_DIGITS);
    for (int i = 1; i < iDigits; i++) {
        iValue = iValue * 10 + (int) digits[i] - (int) '0';
    }
    long lValue = (long) iValue;
    for (int i = iDigits; i < kDigits; i++) {
        lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0');
    }
    double dValue = (double) lValue;
    int exp = decExponent - kDigits;
    //
    // lValue now contains a long integer with the value of
    // the first kDigits digits of the number.
    // dValue contains the (double) of the same.
    //

    if (nDigits <= MAX_DECIMAL_DIGITS) {
        //
        // possibly an easy case.
        // We know that the digits can be represented
        // exactly. And if the exponent isn't too outrageous,
        // the whole thing can be done with one operation,
        // thus one rounding error.
        // Note that all our constructors trim all leading and
        // trailing zeros, so simple values (including zero)
        // will always end up here
        //
        if (exp == 0 || dValue == 0.0) {
            return (isNegative) ? -dValue : dValue; // small floating integer
        } else if (exp >= 0) {
            if (exp <= MAX_SMALL_TEN) {
                //
                // Can get the answer with one operation,
                // thus one roundoff.
                //
                double rValue = dValue * SMALL_10_POW[exp];
                return (isNegative) ? -rValue : rValue;
            }
            int slop = MAX_DECIMAL_DIGITS - kDigits;
            if (exp <= MAX_SMALL_TEN + slop) {
                //
                // We can multiply dValue by 10^(slop)
                // and it is still "small" and exact.
                // Then we can multiply by 10^(exp-slop)
                // with one rounding.
                //
                dValue *= SMALL_10_POW[slop];
                double rValue = dValue * SMALL_10_POW[exp - slop];
                return (isNegative) ? -rValue : rValue;
            }
            //
            // Else we have a hard case with a positive exp.
            //
        } else {
            if (exp >= -MAX_SMALL_TEN) {
                //
                // Can get the answer in one division.
                //
                double rValue = dValue / SMALL_10_POW[-exp];
                return (isNegative) ? -rValue : rValue;
            }
            //
            // Else we have a hard case with a negative exp.
            //
        }
    }

    //
    // Harder cases:
    // The sum of digits plus exponent is greater than
    // what we think we can do with one error.
    //
    // Start by approximating the right answer by,
    // naively, scaling by powers of 10.
    //
    if (exp > 0) {
        if (decExponent > MAX_DECIMAL_EXPONENT + 1) {
            //
            // Lets face it. This is going to be
            // Infinity. Cut to the chase.
            //
            return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
        }
        if ((exp & 15) != 0) {
            dValue *= SMALL_10_POW[exp & 15];
        }
        if ((exp >>= 4) != 0) {
            int j;
            for (j = 0; exp > 1; j++, exp >>= 1) {
                if ((exp & 1) != 0) {
                    dValue *= BIG_10_POW[j];
                }
            }
            //
            // The reason for the weird exp > 1 condition
            // in the above loop was so that the last multiply
            // would get unrolled. We handle it here.
            // It could overflow.
            //
            double t = dValue * BIG_10_POW[j];
            if (Double.isInfinite(t)) {
                //
                // It did overflow.
                // Look more closely at the result.
                // If the exponent is just one too large,
                // then use the maximum finite as our estimate
                // value. Else call the result infinity
                // and punt it.
                // ( I presume this could happen because
                // rounding forces the result here to be
                // an ULP or two larger than
                // Double.MAX_VALUE ).
                //
                t = dValue / 2.0;
                t *= BIG_10_POW[j];
                if (Double.isInfinite(t)) {
                    return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
                }
                t = Double.MAX_VALUE;
            }
            dValue = t;
        }
    } else if (exp < 0) {
        exp = -exp;
        if (decExponent < MIN_DECIMAL_EXPONENT - 1) {
            //
            // Lets face it. This is going to be
            // zero. Cut to the chase.
            //
            return (isNegative) ? -0.0 : 0.0;
        }
        if ((exp & 15) != 0) {
            dValue /= SMALL_10_POW[exp & 15];
        }
        if ((exp >>= 4) != 0) {
            int j;
            for (j = 0; exp > 1; j++, exp >>= 1) {
                if ((exp & 1) != 0) {
                    dValue *= TINY_10_POW[j];
                }
            }
            //
            // The reason for the weird exp > 1 condition
            // in the above loop was so that the last multiply
            // would get unrolled. We handle it here.
            // It could underflow.
            //
            double t = dValue * TINY_10_POW[j];
            if (t == 0.0) {
                //
                // It did underflow.
                // Look more closely at the result.
                // If the exponent is just one too small,
                // then use the minimum finite as our estimate
                // value. Else call the result 0.0
                // and punt it.
                // ( I presume this could happen because
                // rounding forces the result here to be
                // an ULP or two less than
                // Double.MIN_VALUE ).
                //
                t = dValue * 2.0;
                t *= TINY_10_POW[j];
                if (t == 0.0) {
                    return (isNegative) ? -0.0 : 0.0;
                }
                t = Double.MIN_VALUE;
            }
            dValue = t;
        }
    }

    //
    // dValue is now approximately the result.
    // The hard part is adjusting it, by comparison
    // with FDBigInteger arithmetic.
    // Formulate the EXACT big-number result as
    // bigD0 * 10^exp
    //
    if (nDigits > MAX_NDIGITS) {
        nDigits = MAX_NDIGITS + 1;
        digits[MAX_NDIGITS] = '1';
    }
    FDBigInteger bigD0 = new FDBigInteger(lValue, digits, kDigits, nDigits);
    exp = decExponent - nDigits;

    long ieeeBits = Double.doubleToRawLongBits(dValue); // IEEE-754 bits of double candidate
    final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop
    final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop
    bigD0 = bigD0.multByPow52(D5, 0);
    bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop
    FDBigInteger bigD = null;
    int prevD2 = 0;

    correctionLoop: while (true) {
        // here ieeeBits can't be NaN, Infinity or zero
        int binexp = (int) (ieeeBits >>> EXP_SHIFT);
        long bigBbits = ieeeBits & SIGNIF_BIT_MASK;
        if (binexp > 0) {
            bigBbits |= FRACT_HOB;
        } else { // Normalize denormalized numbers.
            assert bigBbits != 0L : bigBbits; // doubleToBigInt(0.0)
            int leadingZeros = Long.numberOfLeadingZeros(bigBbits);
            int shift = leadingZeros - (63 - EXP_SHIFT);
            bigBbits <<= shift;
            binexp = 1 - shift;
        }
        binexp -= EXP_BIAS;
        int lowOrderZeros = Long.numberOfTrailingZeros(bigBbits);
        bigBbits >>>= lowOrderZeros;
        final int bigIntExp = binexp - EXP_SHIFT + lowOrderZeros;
        final int bigIntNBits = EXP_SHIFT + 1 - lowOrderZeros;

        //
        // Scale bigD, bigB appropriately for
        // big-integer operations.
        // Naively, we multiply by powers of ten
        // and powers of two. What we actually do
        // is keep track of the powers of 5 and
        // powers of 2 we would use, then factor out
        // common divisors before doing the work.
        //
        int B2 = B5; // powers of 2 in bigB
        int D2 = D5; // powers of 2 in bigD
        int Ulp2; // powers of 2 in halfUlp.
        if (bigIntExp >= 0) {
            B2 += bigIntExp;
        } else {
            D2 -= bigIntExp;
        }
        Ulp2 = B2;
        // shift bigB and bigD left by a number s. t.
        // halfUlp is still an integer.
        int hulpbias;
        if (binexp <= -EXP_BIAS) {
            // This is going to be a denormalized number
            // (if not actually zero).
            // half an ULP is at 2^-(DoubleConsts.EXP_BIAS+EXP_SHIFT+1)
            hulpbias = binexp + lowOrderZeros + EXP_BIAS;
        } else {
            hulpbias = 1 + lowOrderZeros;
        }
        B2 += hulpbias;
        D2 += hulpbias;
        // if there are common factors of 2, we might just as well
        // factor them out, as they add nothing useful.
        int common2 = Math.min(B2, Math.min(D2, Ulp2));
        B2 -= common2;
        D2 -= common2;
        Ulp2 -= common2;
        // do multiplications by powers of 5 and 2
        FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2);
        if (bigD == null || prevD2 != D2) {
            bigD = bigD0.leftShift(D2);
            prevD2 = D2;
        }
        //
        // to recap:
        // bigB is the scaled-big-int version of our floating-point
        // candidate.
        // bigD is the scaled-big-int version of the exact value
        // as we understand it.
        // halfUlp is 1/2 an ulp of bigB, except for special cases
        // of exact powers of 2
        //
        // the plan is to compare bigB with bigD, and if the difference
        // is less than halfUlp, then we're satisfied. Otherwise,
        // use the ratio of difference to halfUlp to calculate a fudge
        // factor to add to the floating value, then go 'round again.
        //
        FDBigInteger diff;
        int cmpResult;
        boolean overvalue;
        if ((cmpResult = bigB.cmp(bigD)) > 0) {
            overvalue = true; // our candidate is too big.
            diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse
            if ((bigIntNBits == 1) && (bigIntExp > -EXP_BIAS + 1)) {
                // candidate is a normalized exact power of 2 and
                // is too big (larger than Double.MIN_NORMAL). We will be subtracting.
                // For our purposes, ulp is the ulp of the
                // next smaller range.
                Ulp2 -= 1;
                if (Ulp2 < 0) {
                    // rats. Cannot de-scale ulp this far.
                    // must scale diff in other direction.
                    Ulp2 = 0;
                    diff = diff.leftShift(1);
                }
            }
        } else if (cmpResult < 0) {
            overvalue = false; // our candidate is too small.
            diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse
        } else {
            // the candidate is exactly right!
            // this happens with surprising frequency
            break correctionLoop;
        }
        cmpResult = diff.cmpPow52(B5, Ulp2);
        if ((cmpResult) < 0) {
            // difference is small.
            // this is close enough
            break correctionLoop;
        } else if (cmpResult == 0) {
            // difference is exactly half an ULP
            // round to some other value maybe, then finish
            if ((ieeeBits & 1) != 0) { // half ties to even
                ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
            }
            break correctionLoop;
        } else {
            // difference is non-trivial.
            // could scale addend by ratio of difference to
            // halfUlp here, if we bothered to compute that difference.
            // Most of the time ( I hope ) it is about 1 anyway.
            ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
            if (ieeeBits == 0 || ieeeBits == EXP_BIT_MASK) { // 0.0 or Double.POSITIVE_INFINITY
                break correctionLoop; // oops. Fell off end of range.
            }
            continue; // try again.
        }

    }
    if (isNegative) {
        ieeeBits |= SIGN_BIT_MASK;
    }
    return Double.longBitsToDouble(ieeeBits);
}

From source file:it.unibo.alchemist.model.implementations.actions.SocialForceAgent.java

@Override
public void execute() {
    // Retrieve the local neighborhood
    final Neighborhood<List<ILsaMolecule>> neigh = getLocalNeighborhood();
    targetPositions = null;//from  ww w.j  av a  2s. c o m
    bestNode = null;

    // If a group doesn't exists
    if (groupId == 0) {
        // Execute only the minimum gradient value search
        minimumGradientSearch(neigh);
    } else { // If a group exist
        // If minimum gradient value search is selected
        if (getMinimumGradient) {
            // For each node in the neighborhood
            minimumGradientSearch(neigh);

            // If there aren't any minimum gradient node, return
            if (bestNode == null || bestNode.contains(ACTIVE)) {
                return;
            }
            releasepheromone();
        } else {
            // If the maximum pheromone value search
            maximumpheromoneSearch(neigh);

            // If there aren't any minumum gradient node, return
            if (bestNode == null || bestNode.contains(ACTIVE)) {
                /*
                 * TODO: the pedestrian may loop in here. This is a bug.
                 */
                return;
            }
            checkMaxpheromoneNodeDistance();
        }
    }

    // If there aren't any minumum gradient node, return
    if (bestNode == null || bestNode.contains(ACTIVE)) {
        return;
    }

    if (targetPositions != null) {
        // Get target x and y coordinates
        final double x = targetPositions.getCartesianCoordinates()[0];
        final double y = targetPositions.getCartesianCoordinates()[1];
        double dx = 0;
        double dy = 0;
        double ax = 0;
        double ay = 0;

        // TARGET FORCE - Compute the target node attractive force
        // contribution
        final Position mypos = getCurrentPosition();
        final double myx = mypos.getCartesianCoordinates()[0];
        final double myy = mypos.getCartesianCoordinates()[1];
        final double distancex = x - myx;
        final double distancey = y - myy;
        final double dist = env.getDistanceBetweenNodes(bestNode, getNode());
        final double targetForceX = distancex / dist; // vector components
        final double targetForceY = distancey / dist;

        // DESIRED FORCE - Compute the desired force starting from the
        // target force and the agent's speed
        final Position desiredForce = new Continuous2DEuclidean(targetForceX * vmax, targetForceY * vmax);

        // SOCIAL FORCE - Compute neighbors pedestrians repulsive force
        // contribution
        final Position socialForce = computeInteractions(desiredForce, myx, myy);

        /*
         * DODGE FORCE - Compute the force contribution that makes
         * pedestrian turn rightor left in order to dodge other pedestrians
         */
        final Position dodgeForce = computeDodgeForce(neigh, desiredForce, mypos);

        // OBSTACLE FORCE - Compute near obstacles repulsive force
        // contribution
        final Position obstacleForce = computeObstacleForce(myx, myy, mypos);

        // Compute acceleration components as a sum between all forces
        // acting on the agent
        ax = desiredForceFactor * desiredForce.getCartesianCoordinates()[0]
                + socialForceFactor * socialForce.getCartesianCoordinates()[0]
                + dodgeForceFactor * dodgeForce.getCartesianCoordinates()[0]
                + obstacleForceFactor * obstacleForce.getCartesianCoordinates()[0];

        ay = desiredForceFactor * desiredForce.getCartesianCoordinates()[1]
                + socialForceFactor * socialForce.getCartesianCoordinates()[1]
                + dodgeForceFactor * dodgeForce.getCartesianCoordinates()[1]
                + obstacleForceFactor * obstacleForce.getCartesianCoordinates()[1];

        // Compute new speed components
        vx = momentumFactor * vx + ax;
        vy = momentumFactor * vy + ay;

        // Check if new speed is greater than max speed, adjust it
        final double speed = Math.sqrt(vx * vx + vy * vy);
        if (speed > vmax) {
            vx = (vx / speed) * vmax; // compute the vector components
            vy = (vy / speed) * vmax;
        }

        // Compute displacement components
        dx = deltaT * vx;
        dy = deltaT * vy;

        // DIRECTION ADJUSTMENT
        /*
         * Check if both new displacement components aren't opposite to
         * previous displacement components.So an agent ignore those
         * displacement that lead him to make a step back.
         */
        if ((Double.longBitsToDouble(Double.doubleToRawLongBits(dxOld) ^ Double.doubleToRawLongBits(dx))) < 0
                && (Double.longBitsToDouble(
                        Double.doubleToRawLongBits(dyOld) ^ Double.doubleToRawLongBits(dy))) < 0) {
            if (rs.nextDouble() > 1 - pejorativeMoveProbability) {
                dx = 0;
                dy = 0;
            }
        } else {
            // Compute the new direction components as a weighted average
            // between old and freshly computed direction components.
            dx = (dxOld * oldW + dx * newW) / (oldW + newW);
            dy = (dyOld * oldW + dy * newW) / (oldW + newW);
        }
        // Store new direction components for the next cycle
        dxOld = dx;
        dyOld = dy;

        // BODY-TO-BODY INTERACION ADJUSTMENT
        // For each node in the neighborhood
        for (final Node<List<ILsaMolecule>> node : neigh.getNeighbors()) {
            final ILsaNode n = (ILsaNode) node;
            // If the current node is a person
            if (n.getConcentration(PERSON).size() != 0) {
                final Position pos = env.getPosition(n);
                double xOther = 0, yOther = 0;
                // If the distance between me and the current person is
                // less than a certain range
                if (pos.getDistanceTo(mypos) < proximityDecelerationRange) {
                    xOther = pos.getCartesianCoordinates()[0];
                    yOther = pos.getCartesianCoordinates()[1];
                    // If the current person is in front of me, so
                    // decelerate
                    if ((dx > 0 && xOther > myx) || (dx < 0 && xOther < myx)) {
                        dx = dx * decelerationFactor;
                    }
                    if ((dy > 0 && yOther > myy) || (dy < 0 && yOther < myy)) {
                        dy = dy * decelerationFactor;
                    }
                }
            }
        }

        // STOPPING THE MOVEMENT AT THE DESTINATION
        // If the final target node is in line of sight
        if (stopAtTarget && targetInLineOfSight) {
            /*
             * If the displacement is too little means that the agent is
             * very near to the destination butcan't proceed because of the
             * presence of other pedestrians
             */
            if (dx < minDisplacement && dx > -minDisplacement && dy < minDisplacement
                    && dy > -minDisplacement) {
                minDisplacementCycleCount++;
            }
            // If the count of cycles in which the displacement is
            // negligible is greater than a certain threshold
            if (minDisplacementCycleCount > minDispCycTh) {
                // Don't move anymore
                dx = 0;
                dy = 0;
            }
        }

        // If displacement components are greater than zero, check if they
        // aren't over the limit
        dx = dx > 0 ? Math.min(LIMIT, dx) : Math.max(-LIMIT, dx);
        dy = dy > 0 ? Math.min(LIMIT, dy) : Math.max(-LIMIT, dy);

        // If displacement components are greater than zero perform a
        // movement
        final boolean moveH = dx > 0 || dx < 0;
        final boolean moveV = dy > 0 || dy < 0;
        if (moveH || moveV) {
            move(new Continuous2DEuclidean(moveH ? dx : 0, moveV ? dy : 0));
        }
    }
}

From source file:com.datatorrent.lib.appdata.gpo.GPOUtils.java

/**
 * This method deserializes a double from the given byte array from the given offset,
 * and increments the offset appropriately.
 * @param buffer The byte buffer to deserialize from.
 * @param offset The offset to deserialize from.
 * @return The deserialized double./*  w w  w.  j  av  a  2 s.  c o  m*/
 */
public static double deserializeDouble(byte[] buffer, MutableInt offset) {
    int offsetInt = offset.intValue();
    long val = (((long) buffer[0 + offsetInt]) & 0xFFL) << 56 | ((((long) buffer[1 + offsetInt]) & 0xFFL) << 48)
            | ((((long) buffer[2 + offsetInt]) & 0xFFL) << 40)
            | ((((long) buffer[3 + offsetInt]) & 0xFFL) << 32)
            | ((((long) buffer[4 + offsetInt]) & 0xFFL) << 24)
            | ((((long) buffer[5 + offsetInt]) & 0xFFL) << 16) | ((((long) buffer[6 + offsetInt]) & 0xFFL) << 8)
            | (((long) buffer[7 + offsetInt]) & 0xFFL);

    offset.add(Type.DOUBLE.getByteSize());
    return Double.longBitsToDouble(val);
}

From source file:com.healthmarketscience.jackcess.Column.java

/**
 * Decodes a date value./*w ww  . j av a2  s.  com*/
 */
private Date readDateValue(ByteBuffer buffer) {
    // seems access stores dates in the local timezone.  guess you just hope
    // you read it in the same timezone in which it was written!
    long dateBits = buffer.getLong();
    long time = fromDateDouble(Double.longBitsToDouble(dateBits));
    return new DateExt(time, dateBits);
}

From source file:org.freedesktop.dbus.Message.java

/**
 * Demarshall one value from a buffer.//w  w  w  . jav a2s.c  o m
 * 
 * @param sigb
 *            A buffer of the D-Bus signature.
 * @param buf
 *            The buffer to demarshall from.
 * @param ofs
 *            An array of two ints, the offset into the signature buffer
 *            and the offset into the data buffer. These values will be
 *            updated to the start of the next value ofter demarshalling.
 * @param contained
 *            converts nested arrays to Lists
 * @return The demarshalled value.
 */
private Object extractone(byte[] sigb, byte[] buf, int[] ofs, boolean contained) throws DBusException {
    if (log.isTraceEnabled()) {
        log.trace("Extracting type: " + ((char) sigb[ofs[0]]) + " from offset " + ofs[1]);
    }
    Object rv = null;
    ofs[1] = align(ofs[1], sigb[ofs[0]]);
    switch (sigb[ofs[0]]) {
    case ArgumentType.BYTE:
        rv = buf[ofs[1]++];
        break;
    case ArgumentType.UINT32:
        rv = new UInt32(demarshallint(buf, ofs[1], 4));
        ofs[1] += 4;
        break;
    case ArgumentType.INT32:
        rv = (int) demarshallint(buf, ofs[1], 4);
        ofs[1] += 4;
        break;
    case ArgumentType.INT16:
        rv = (short) demarshallint(buf, ofs[1], 2);
        ofs[1] += 2;
        break;
    case ArgumentType.UINT16:
        rv = new UInt16((int) demarshallint(buf, ofs[1], 2));
        ofs[1] += 2;
        break;
    case ArgumentType.INT64:
        rv = demarshallint(buf, ofs[1], 8);
        ofs[1] += 8;
        break;
    case ArgumentType.UINT64:
        long top;
        long bottom;
        if (this.big) {
            top = demarshallint(buf, ofs[1], 4);
            ofs[1] += 4;
            bottom = demarshallint(buf, ofs[1], 4);
        } else {
            bottom = demarshallint(buf, ofs[1], 4);
            ofs[1] += 4;
            top = demarshallint(buf, ofs[1], 4);
        }
        rv = new UInt64(top, bottom);
        ofs[1] += 4;
        break;
    case ArgumentType.DOUBLE:
        long l = demarshallint(buf, ofs[1], 8);
        ofs[1] += 8;
        rv = Double.longBitsToDouble(l);
        break;
    case ArgumentType.FLOAT:
        int rf = (int) demarshallint(buf, ofs[1], 4);
        ofs[1] += 4;
        rv = Float.intBitsToFloat(rf);
        break;
    case ArgumentType.BOOLEAN:
        rf = (int) demarshallint(buf, ofs[1], 4);
        ofs[1] += 4;
        rv = (1 == rf) ? Boolean.TRUE : Boolean.FALSE;
        break;
    case ArgumentType.ARRAY:
        long size = demarshallint(buf, ofs[1], 4);
        if (log.isTraceEnabled()) {
            log.trace("Reading array of size: " + size);
        }
        ofs[1] += 4;
        byte algn = (byte) getAlignment(sigb[++ofs[0]]);
        ofs[1] = align(ofs[1], sigb[ofs[0]]);
        int length = (int) (size / algn);
        if (length > AbstractConnection.MAX_ARRAY_LENGTH)
            throw new MarshallingException("Arrays must not exceed " + AbstractConnection.MAX_ARRAY_LENGTH);
        // optimise primatives
        switch (sigb[ofs[0]]) {
        case ArgumentType.BYTE:
            rv = new byte[length];
            System.arraycopy(buf, ofs[1], rv, 0, length);
            ofs[1] += size;
            break;
        case ArgumentType.INT16:
            rv = new short[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((short[]) rv)[j] = (short) demarshallint(buf, ofs[1], algn);
            break;
        case ArgumentType.INT32:
            rv = new int[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((int[]) rv)[j] = (int) demarshallint(buf, ofs[1], algn);
            break;
        case ArgumentType.INT64:
            rv = new long[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((long[]) rv)[j] = demarshallint(buf, ofs[1], algn);
            break;
        case ArgumentType.BOOLEAN:
            rv = new boolean[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((boolean[]) rv)[j] = (1 == demarshallint(buf, ofs[1], algn));
            break;
        case ArgumentType.FLOAT:
            rv = new float[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((float[]) rv)[j] = Float.intBitsToFloat((int) demarshallint(buf, ofs[1], algn));
            break;
        case ArgumentType.DOUBLE:
            rv = new double[length];
            for (int j = 0; j < length; j++, ofs[1] += algn)
                ((double[]) rv)[j] = Double.longBitsToDouble(demarshallint(buf, ofs[1], algn));
            break;
        case ArgumentType.DICT_ENTRY1:
            if (0 == size) {
                // advance the type parser even on 0-size arrays.
                Vector<Type> temp = new Vector<>();
                byte[] temp2 = new byte[sigb.length - ofs[0]];
                System.arraycopy(sigb, ofs[0], temp2, 0, temp2.length);
                String temp3 = new String(temp2);
                // ofs[0] gets incremented anyway. Leave one character on the stack
                int temp4 = Marshalling.getJavaType(temp3, temp, 1) - 1;
                ofs[0] += temp4;
                if (log.isTraceEnabled()) {
                    log.trace("Aligned type: " + temp3 + " " + temp4 + " " + ofs[0]);
                }
            }
            int ofssave = ofs[0];
            long end = ofs[1] + size;
            Vector<Object[]> entries = new Vector<>();
            while (ofs[1] < end) {
                ofs[0] = ofssave;
                entries.add((Object[]) extractone(sigb, buf, ofs, true));
            }
            rv = new DBusMap<>(entries.toArray(new Object[0][]));
            break;
        default:
            if (0 == size) {
                // advance the type parser even on 0-size arrays.
                Vector<Type> temp = new Vector<>();
                byte[] temp2 = new byte[sigb.length - ofs[0]];
                System.arraycopy(sigb, ofs[0], temp2, 0, temp2.length);
                String temp3 = new String(temp2);
                // ofs[0] gets incremented anyway. Leave one character on the stack
                int temp4 = Marshalling.getJavaType(temp3, temp, 1) - 1;
                ofs[0] += temp4;
                if (log.isTraceEnabled()) {
                    log.trace("Aligned type: " + temp3 + " " + temp4 + " " + ofs[0]);
                }
            }
            ofssave = ofs[0];
            end = ofs[1] + size;
            Vector<Object> contents = new Vector<>();
            while (ofs[1] < end) {
                ofs[0] = ofssave;
                contents.add(extractone(sigb, buf, ofs, true));
            }
            rv = contents;
        }
        if (contained && !(rv instanceof List) && !(rv instanceof Map))
            rv = ArrayFrob.listify(rv);
        break;
    case ArgumentType.STRUCT1:
        Vector<Object> contents = new Vector<>();
        while (sigb[++ofs[0]] != ArgumentType.STRUCT2)
            contents.add(extractone(sigb, buf, ofs, true));
        rv = contents.toArray();
        break;
    case ArgumentType.DICT_ENTRY1:
        Object[] decontents = new Object[2];
        if (log.isTraceEnabled()) {
            Hex h = new Hex();
            log.trace(
                    "Extracting Dict Entry (" + h.encode(Arrays.copyOfRange(sigb, ofs[0], sigb.length - ofs[0]))
                            + ") from: " + h.encode(Arrays.copyOfRange(buf, ofs[1], buf.length - ofs[1])));
        }
        ofs[0]++;
        decontents[0] = extractone(sigb, buf, ofs, true);
        ofs[0]++;
        decontents[1] = extractone(sigb, buf, ofs, true);
        ofs[0]++;
        rv = decontents;
        break;
    case ArgumentType.VARIANT:
        int[] newofs = new int[] { 0, ofs[1] };
        String sig = (String) extract(ArgumentType.SIGNATURE_STRING, buf, newofs)[0];
        newofs[0] = 0;
        rv = new Variant<>(extract(sig, buf, newofs)[0], sig);
        ofs[1] = newofs[1];
        break;
    case ArgumentType.STRING:
        length = (int) demarshallint(buf, ofs[1], 4);
        ofs[1] += 4;
        try {
            rv = new String(buf, ofs[1], length, "UTF-8");
        } catch (UnsupportedEncodingException UEe) {
            throw new DBusException("System does not support UTF-8 encoding", UEe);
        }
        ofs[1] += length + 1;
        break;
    case ArgumentType.OBJECT_PATH:
        length = (int) demarshallint(buf, ofs[1], 4);
        ofs[1] += 4;
        rv = new ObjectPath(getSource(), new String(buf, ofs[1], length));
        ofs[1] += length + 1;
        break;
    case ArgumentType.SIGNATURE:
        length = (buf[ofs[1]++] & 0xFF);
        rv = new String(buf, ofs[1], length);
        ofs[1] += length + 1;
        break;
    default:
        throw new UnknownTypeCodeException(sigb[ofs[0]]);
    }
    if (log.isDebugEnabled()) {
        if (rv instanceof Object[])
            log.trace("Extracted: " + Arrays.deepToString((Object[]) rv) + " (now at " + ofs[1] + ")");
        else
            log.trace("Extracted: " + rv + " (now at " + ofs[1] + ")");
    }
    return rv;
}

From source file:com.healthmarketscience.jackcess.impl.DatabaseImpl.java

/**
 * Returns the password mask retrieved from the given header page and
 * format, or {@code null} if this format does not use a password mask.
 *///from   w  w w  . java2s. co  m
static byte[] getPasswordMask(ByteBuffer buffer, JetFormat format) {
    // get extra password mask if necessary (the extra password mask is
    // generated from the database creation date stored in the header)
    int pwdMaskPos = format.OFFSET_HEADER_DATE;
    if (pwdMaskPos < 0) {
        return null;
    }

    buffer.position(pwdMaskPos);
    double dateVal = Double.longBitsToDouble(buffer.getLong());

    byte[] pwdMask = new byte[4];
    PageChannel.wrap(pwdMask).putInt((int) dateVal);

    return pwdMask;
}

From source file:com.ricemap.spateDB.core.RTree.java

public static double fastPow(double a, double b) {
    final long tmp = (long) (9076650 * (a - 1) / (a + 1 + 4 * (Math.sqrt(a))) * b + 1072632447);
    return Double.longBitsToDouble(tmp << 32);
}

From source file:com.healthmarketscience.jackcess.Database.java

/**
 * Returns the password mask retrieved from the given header page and
 * format, or {@code null} if this format does not use a password mask.
 *//*from  ww  w .  j av  a  2  s .c  o m*/
static byte[] getPasswordMask(ByteBuffer buffer, JetFormat format) {
    // get extra password mask if necessary (the extra password mask is
    // generated from the database creation date stored in the header)
    int pwdMaskPos = format.OFFSET_HEADER_DATE;
    if (pwdMaskPos < 0) {
        return null;
    }

    buffer.position(pwdMaskPos);
    double dateVal = Double.longBitsToDouble(buffer.getLong());

    byte[] pwdMask = new byte[4];
    ByteBuffer.wrap(pwdMask).order(PageChannel.DEFAULT_BYTE_ORDER).putInt((int) dateVal);

    return pwdMask;
}