List of usage examples for java.lang Byte equals
public boolean equals(Object obj)
From source file:Main.java
public static void main(String[] args) { Byte byte1 = new Byte("1"); Byte byte2 = new Byte("2"); System.out.println(byte1.equals(byte2)); }
From source file:edu.ku.brc.specify.tasks.services.PickListUtils.java
public static boolean equals(Byte v1, Byte v2) { return (v1 == null ? v2 == null : v1.equals(v2)); }
From source file:com.healthmarketscience.jackcess.query.QueryTest.java
private static void removeRows(Query query, Byte attr) { for (Iterator<Row> iter = ((QueryImpl) query).getRows().iterator(); iter.hasNext();) { if (attr.equals(iter.next().attribute)) { iter.remove();//from ww w . j a va2 s .c om } } }
From source file:com.healthmarketscience.jackcess.impl.query.QueryImpl.java
private static List<Row> getRowsByAttribute(List<Row> rows, Byte attribute) { List<Row> result = new ArrayList<Row>(); for (Row row : rows) { if (attribute.equals(row.attribute)) { result.add(row);// w w w.j a va2s . co m } } return result; }
From source file:com.jaspersoft.ireport.designer.sheet.properties.charts.OrientationProperty.java
@Override public void setByte(Byte position) { if (position.equals(ORIENTATION_VERTICAL)) { plot.setOrientation(PlotOrientation.VERTICAL); } else {//from w w w . j ava2 s . c o m plot.setOrientation(PlotOrientation.HORIZONTAL); } }
From source file:ch.epfl.lis.gnwgui.jungtransformers.EdgeArrowColorTransformer.java
/** * Return the color that should be used for each edge/arrow of the network. *//*from w w w. ja va 2s . co m*/ public Paint transform(E e) { Edge edge = (Edge) e; Byte type = edge.getType(); if (type.equals(enhancerType_)) return enhancerColor_; else if (type.equals(inhibitorType_)) return inhibitoryColor_; else if (type.equals(dualType_)) return dualColor_; else if (type.equals(unknownType_)) return unknownColor_; else return Color.BLACK; }
From source file:ch.epfl.lis.gnwgui.jungtransformers.EdgeTransformer.java
/** * Return the color that should be used for each edge/arrow of the network. *//*from w w w. j a va 2 s .c o m*/ public Stroke transform(E e) { Edge edge = (Edge) e; Byte type = edge.getType(); if (type.equals(enhancerType_)) return enhancerStroke_; else if (type.equals(inhibitorType_)) return inhibitoryStroke_; else if (type.equals(dualType_)) return dualStroke_; else if (type.equals(unknownType_)) return unknownStroke_; else return getBasicStroke(10.0f); }
From source file:ch.epfl.lis.gnwgui.jungtransformers.ArrowShapeTransformer.java
/** * Return the arrow that should be used for each edge of the network. *///from w w w . j a v a2s.c o m public Shape transform(Context<Graph<V, E>, E> context) { Edge e = (Edge) context.element; Byte type = e.getType(); if (type.equals(enhancerType_)) return enhancerArrow_; else if (type.equals(inhibitorType_)) return inhibitoryArrow_; else if (type.equals(dualType_)) return dualArrow_; else if (type.equals(unknownType_)) return unknownArrow_; else return unknownArrow_; }
From source file:edu.ku.brc.specify.datamodel.PickListItem.java
public int compareTo(PickListItemIFace obj) { Byte sortType = null; if (pickList != null) { sortType = pickList.getSortType(); }/*from ww w. ja va2s. c om*/ if (sortType != null && sortType.equals(PickListIFace.PL_ORDINAL_SORT)) { if (ordinal.equals(obj.getOrdinal())) { return 0; } // else return ordinal.compareTo(obj.getOrdinal()); } // Default to title if (title != null && obj != null && obj.getTitle() != null) { return title.compareTo(obj.getTitle()); } // else return 0; }
From source file:com.ebay.erl.mobius.core.mapred.DefaultMobiusReducer.java
@Override public void joinreduce(Tuple key, DataJoinValueGroup<Tuple> values, OutputCollector<NullWritable, WritableComparable<?>> output, Reporter reporter) throws IOException { // set reporter for all projectable if (!reporterSet) { for (Projectable p : this._projections) { LOGGER.info("Set reporter to " + p.getClass().getCanonicalName()); p.setReporter(reporter);/*from w w w . ja v a 2 s . c om*/ } reporterSet = true; } this.clearPreviousResults(); int expectingDatasetIDX = 0; // don't keep the values from last dataset into {@BigTupleList}, // using iterator to iterate them through to perform // cross product Iterator<Tuple> valuesFromLastDataset = null; ////////////////////////////////////////// // compute the result for the projections ////////////////////////////////////////// while (values.hasNext()) { Byte datasetID = values.nextDatasetID(); if (!datasetID.equals(_allDatasetIDs[expectingDatasetIDX])) { // no records coming from the expected dataset, means // 1) not full inner join-able, // 2) no records from the left dataset when this is a left-outer-join, or // 3) no records from the right dataset when this is a right-outer-join, return return; } expectingDatasetIDX++; if (!datasetID.equals(this._lastDatasetID))// values not from the last dataset { Iterator<Tuple> valuesForCurrentDataset = values.next(); computeSingleDSFunctionsResults(valuesForCurrentDataset, datasetID, reporter); } else { // the remaining values are all from the last // dataset, keep the reference of the value // iterator to perform cross product later valuesFromLastDataset = values.next(); break; } } if (valuesFromLastDataset == null) { if (!this.isOuterJoin) { // no records from the last dataset, not be able to // do full inner join, return return; } else { // no records from the last dataset, but this is a // outer-join job, continue. } } ////////////////////////////////////////////////////////////// // cross product the results for all the datasets except // the last one, the result only contain projectable functions // that don't require columns from multiple datasets only. ///////////////////////////////////////////////////////////// Iterable<Tuple> resultsFromOtherDatasets = this.crossProduct(reporter, false, _allButNotLastDatasetIDs); List<Iterable<Tuple>> toBeCrossProduct = new ArrayList<Iterable<Tuple>>(); if (resultsFromOtherDatasets != null) toBeCrossProduct.add(resultsFromOtherDatasets); ///////////////////////////////////////////////////// // start to compute the results for the final dataset ///////////////////////////////////////////////////// boolean hasMultiDSFunctions = this.requirePreCrossProduct; if (hasMultiDSFunctions) { // there are functions require columns from multiple // dataset, so save the values from last dataset // into BigTupleList so we can iterate it multiple // times. if (valuesFromLastDataset != null) { while (valuesFromLastDataset.hasNext()) { Tuple aRow = valuesFromLastDataset.next(); this.rememberTuple(_lastDatasetID, aRow, reporter); } Iterable<Tuple> preCrossProduct = Util.crossProduct(conf, reporter, this.valuesForAllDatasets.values().toArray(new BigTupleList[0])); BigTupleList btl = new BigTupleList(reporter); for (Tuple aRow : preCrossProduct) { this.computeExtendFunctions(aRow, btl, this.multiDatasetExtendFunction); this.computeGroupFunctions(aRow, this.multiDatasetGroupFunction); } if (btl.size() > 0) toBeCrossProduct.add(btl); for (GroupFunction fun : this.multiDatasetGroupFunction) toBeCrossProduct.add(fun.getResult()); valuesFromLastDataset = this.valuesForAllDatasets.get(_lastDatasetID).iterator(); } else { if (this.multiDatasetExtendFunction.size() > 0) { BigTupleList btl = new BigTupleList(reporter); this.computeExtendFunctions(null, btl, this.multiDatasetExtendFunction); toBeCrossProduct.add(btl); } for (GroupFunction fun : this.multiDatasetGroupFunction) toBeCrossProduct.add(fun.getNoMatchResult(nullReplacement)); } } // finished the computation of multi-dataset functions, start // to compute the projectable funcitons results for last // dataset // // first compute the cross product of all other functions Iterable<Tuple> others = null; if (toBeCrossProduct.size() > 0) { Iterable<Tuple>[] array = new Iterable[toBeCrossProduct.size()]; for (int i = 0; i < toBeCrossProduct.size(); i++) { array[i] = toBeCrossProduct.get(i); } others = Util.crossProduct(conf, reporter, array); } if (valuesFromLastDataset == null) {// outer-join, so <code>others</code> is always not null. List<BigTupleList> nullResult = new ArrayList<BigTupleList>(); if (this.singleDatasetExtendFunction.get(_lastDatasetID) != null) { BigTupleList btl = new BigTupleList(reporter); this.computeExtendFunctions(null, btl, this.singleDatasetExtendFunction.get(_lastDatasetID)); nullResult.add(btl); } if (this.singleDatasetGroupFunction.get(_lastDatasetID) != null) { for (GroupFunction fun : this.singleDatasetGroupFunction.get(_lastDatasetID)) nullResult.add(fun.getNoMatchResult(nullReplacement)); } for (Tuple t1 : Util.crossProduct(conf, reporter, nullResult)) { for (Tuple t2 : others) { this.output(Tuple.merge(t1, t2), output, reporter); } } } else { boolean hasNoGroupFunctionForLastDS = this.singleDatasetGroupFunction.get(this._lastDatasetID) == null; while (valuesFromLastDataset.hasNext()) { Tuple aRow = valuesFromLastDataset.next(); aRow.setSchema(this.getSchemaByDatasetID(_lastDatasetID)); if (hasNoGroupFunctionForLastDS) { // there is no group function from the last DS, we can // do some optimization here: as we streaming over the // values of last dataset, we also emit outputs. Tuple merged = new Tuple(); for (ExtendFunction func : this.singleDatasetExtendFunction.get(_lastDatasetID)) { merged = Tuple.merge(merged, func.getResult(aRow)); } if (others != null) { for (Tuple t : others) { this.output(Tuple.merge(t, merged), output, reporter); } } else { this.output(merged, output, reporter); } } else { this.processExtendFunctions(_lastDatasetID, aRow, reporter); this.computeGroupFunctions(_lastDatasetID, aRow); } } if (!hasNoGroupFunctionForLastDS) { for (Tuple t1 : this.crossProduct(reporter, false, _lastDatasetID)) { if (others != null) { for (Tuple t2 : others) { this.output(Tuple.merge(t1, t2), output, reporter); } } else { this.output(t1, output, reporter); } } } } }