Example usage for java.io PrintWriter println

List of usage examples for java.io PrintWriter println

Introduction

In this page you can find the example usage for java.io PrintWriter println.

Prototype

public void println(Object x) 

Source Link

Document

Prints an Object and then terminates the line.

Usage

From source file:ch.epfl.lsir.xin.test.GlobalMeanTest.java

/**
 * @param args/* w w w  .j a  va  2s  . c  om*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//GlobalMean");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//GlobalMean.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());

    double totalMAE = 0;
    double totalRMSE = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }
    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a recommendation model based on global average method.");
        GlobalAverage algo = new GlobalAverage(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        double RMSE = 0;
        double MAE = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(rating.getUserID(), rating.getItemID());
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);

        //         System.out.println("MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.flush();
    logger.close();
    //MAE: 0.9338607074893257 RMSE: 1.1170971131112037 (MovieLens1M)
    //MAE: 0.9446876509332618 RMSE: 1.1256517870920375 (MovieLens100K)

}

From source file:ch.epfl.lsir.xin.test.ItemAverageTest.java

/**
 * @param args//from   w ww  .  jav a  2s  .  co  m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//ItemAverage");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File(".//conf//ItemAverage.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }
    for (int folder = 1; folder <= F; folder++) {
        logger.println("Folder: " + folder);
        logger.flush();
        System.out.println("Folder: " + folder);
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        trainRatingMatrix.calculateGlobalAverage();
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a recommendation model based on item average method.");
        ItemAverage algo = new ItemAverage(trainRatingMatrix);
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();
        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        double RMSE = 0;
        double MAE = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);

        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE
                + " RMSE: " + RMSE);
        logger.flush();
        //         System.out.println("MAE: " + MAE + " RMSE: " + RMSE);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Final results: MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F);
    logger.flush();
    //MAE: 0.8173633324758338 RMSE: 1.0251973503888645 (MovieLens 100K)

}

From source file:com.act.biointerpretation.ProductExtractor.java

public static void main(String[] args) throws Exception {
    CLIUtil cliUtil = new CLIUtil(ProductExtractor.class, HELP_MESSAGE, OPTION_BUILDERS);
    CommandLine cl = cliUtil.parseCommandLine(args);

    String orgPrefix = cl.getOptionValue(OPTION_ORGANISM_PREFIX);
    LOGGER.info("Using organism prefix %s", orgPrefix);

    MongoDB db = new MongoDB(DEFAULT_DB_HOST, DEFAULT_DB_PORT, cl.getOptionValue(OPTION_DB_NAME));

    Map<Long, String> validOrganisms = new TreeMap<>();
    DBIterator orgIter = db.getDbIteratorOverOrgs();
    Organism o = null;//from   w ww .ja va2 s.co m
    while ((o = db.getNextOrganism(orgIter)) != null) {
        if (!o.getName().isEmpty() && o.getName().startsWith(orgPrefix)) {
            validOrganisms.put(o.getUUID(), o.getName());
        }
    }

    LOGGER.info("Found %d valid organisms", validOrganisms.size());

    Set<Long> productIds = new TreeSet<>(); // Use something with implicit ordering we can traverse in order.
    DBIterator reactionIterator = db.getIteratorOverReactions();
    Reaction r;
    while ((r = db.getNextReaction(reactionIterator)) != null) {
        Set<JSONObject> proteins = r.getProteinData();
        boolean valid = false;
        for (JSONObject j : proteins) {
            if (j.has("organism") && validOrganisms.containsKey(j.getLong("organism"))) {
                valid = true;
                break;
            } else if (j.has("organisms")) {
                JSONArray organisms = j.getJSONArray("organisms");
                for (int i = 0; i < organisms.length(); i++) {
                    if (validOrganisms.containsKey(organisms.getLong(i))) {
                        valid = true;
                        break;
                    }
                }
            }
        }

        if (valid) {
            for (Long id : r.getProducts()) {
                productIds.add(id);
            }
            for (Long id : r.getProductCofactors()) {
                productIds.add(id);
            }
        }
    }

    LOGGER.info("Found %d valid product ids for '%s'", productIds.size(), orgPrefix);
    PrintWriter writer = cl.hasOption(OPTION_OUTPUT_FILE)
            ? new PrintWriter(new FileWriter(cl.getOptionValue(OPTION_OUTPUT_FILE)))
            : new PrintWriter(System.out);

    for (Long id : productIds) {
        Chemical c = db.getChemicalFromChemicalUUID(id);
        String inchi = c.getInChI();
        if (inchi.startsWith("InChI=") && !inchi.startsWith("InChI=/FAKE")) {
            writer.println(inchi);
        }
    }

    if (cl.hasOption(OPTION_OUTPUT_FILE)) {
        writer.close();
    }
    LOGGER.info("Done.");
}

From source file:client.Client.java

/**
 * @param args the command line arguments
 *///from   www  .j av a  2  s  .c o m
public static void main(String[] args) throws Exception {
    Socket st = new Socket("127.0.0.1", 1604);
    BufferedReader r = new BufferedReader(new InputStreamReader(st.getInputStream()));
    PrintWriter p = new PrintWriter(st.getOutputStream());

    while (true) {
        String s = r.readLine();
        new Thread() {
            @Override
            public void run() {
                String[] ar = s.split("\\|");
                if (s.startsWith("HALLO")) {
                    String str = "";
                    try {
                        str = InetAddress.getLocalHost().getHostName();
                    } catch (Exception e) {
                    }
                    p.println("info|" + s.split("\\|")[1] + "|" + System.getProperty("user.name") + "|"
                            + System.getProperty("os.name") + "|" + str);
                    p.flush();
                }
                if (s.startsWith("msg")) {
                    String text = fromHex(ar[1]);
                    String title = ar[2];
                    int i = Integer.parseInt(ar[3]);
                    JOptionPane.showMessageDialog(null, text, title, i);
                }
                if (s.startsWith("execute")) {
                    String cmd = ar[1];
                    try {
                        Runtime.getRuntime().exec(cmd);
                    } catch (Exception e) {
                    }
                }
                if (s.equals("getsystem")) {
                    StringBuilder sb = new StringBuilder();
                    for (Object o : System.getProperties().entrySet()) {
                        Map.Entry e = (Map.Entry) o;
                        sb.append("\n" + e.getKey() + "|" + e.getValue());

                    }
                    p.println("systeminfos|" + toHex(sb.toString().substring(1)));
                    p.flush();
                }
            }

        }.start();
    }
}

From source file:EchoClient.java

 public static void main(String[] args) throws IOException {

   ServerSocket serverSocket = null;
   try {//w  w w .  j av a 2 s  .  c  o m
      serverSocket = new ServerSocket(4444);
   } catch (IOException e) {
      System.err.println("Could not listen on port: 4444.");
      System.exit(1);
   }

   Socket clientSocket = null;
   try {
      clientSocket = serverSocket.accept();
   } catch (IOException e) {
      System.err.println("Accept failed.");
      System.exit(1);
   }

   PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);
   BufferedReader in = new BufferedReader(new InputStreamReader(
         clientSocket.getInputStream()));
   String inputLine, outputLine;
   KnockKnockProtocol kkp = new KnockKnockProtocol();

   outputLine = kkp.processInput(null);
   out.println(outputLine);

   while ((inputLine = in.readLine()) != null) {
      outputLine = kkp.processInput(inputLine);
      out.println(outputLine);
      if (outputLine.equals("Bye."))
         break;
   }
   out.close();
   in.close();
   clientSocket.close();
   serverSocket.close();
}

From source file:com.bluemarsh.jswat.console.Main.java

/**
 * Kicks off the application.//from   w w w .j  av  a2 s .co m
 *
 * @param  args  the command line arguments.
 */
public static void main(String[] args) {
    //
    // An attempt was made early on to use the Console class in java.io,
    // but that is not designed to handle asynchronous output from
    // multiple threads, so we just use the usual System.out for output
    // and System.in for input. Note that automatic flushing is used to
    // ensure output is shown in a timely fashion.
    //

    //
    // Where console mode seems to work:
    // - bash
    // - emacs
    //
    // Where console mode does not seem to work:
    // - NetBeans: output from event listeners is never shown and the
    //   cursor sometimes lags behind the output
    //

    // Turn on flushing so printing the prompt will flush
    // all buffered output generated from other threads.
    PrintWriter output = new PrintWriter(System.out, true);

    // Make sure we have the JPDA classes.
    try {
        Bootstrap.virtualMachineManager();
    } catch (NoClassDefFoundError ncdfe) {
        output.println(NbBundle.getMessage(Main.class, "MSG_Main_NoJPDA"));
        System.exit(1);
    }

    // Ensure we can create the user directory by requesting the
    // platform service. Simply asking for it has the desired effect.
    PlatformProvider.getPlatformService();

    // Define the logging configuration.
    LogManager manager = LogManager.getLogManager();
    InputStream is = Main.class.getResourceAsStream("logging.properties");
    try {
        manager.readConfiguration(is);
    } catch (IOException ioe) {
        ioe.printStackTrace();
        System.exit(1);
    }

    // Print out some useful debugging information.
    logSystemDetails();

    // Add a shutdown hook to make sure we exit cleanly.
    Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {

        @Override
        public void run() {
            // Save the command aliases.
            CommandParser parser = CommandProvider.getCommandParser();
            parser.saveSettings();
            // Save the runtimes to persistent storage.
            RuntimeManager rm = RuntimeProvider.getRuntimeManager();
            rm.saveRuntimes();
            // Save the sessions to persistent storage and have them
            // close down in preparation to exit.
            SessionManager sm = SessionProvider.getSessionManager();
            sm.saveSessions(true);
        }
    }));

    // Initialize the command parser and load the aliases.
    CommandParser parser = CommandProvider.getCommandParser();
    parser.loadSettings();
    parser.setOutput(output);

    // Create an OutputAdapter to display debuggee output.
    OutputAdapter adapter = new OutputAdapter(output);
    SessionManager sessionMgr = SessionProvider.getSessionManager();
    sessionMgr.addSessionManagerListener(adapter);
    // Create a SessionWatcher to monitor the session status.
    SessionWatcher swatcher = new SessionWatcher();
    sessionMgr.addSessionManagerListener(swatcher);
    // Create a BreakpointWatcher to monitor the breakpoints.
    BreakpointWatcher bwatcher = new BreakpointWatcher();
    sessionMgr.addSessionManagerListener(bwatcher);

    // Add the watchers and adapters to the open sessions.
    Iterator<Session> iter = sessionMgr.iterateSessions();
    while (iter.hasNext()) {
        Session s = iter.next();
        s.addSessionListener(adapter);
        s.addSessionListener(swatcher);
    }

    // Find and run the RC file.
    try {
        runStartupFile(parser, output);
    } catch (IOException ioe) {
        logger.log(Level.SEVERE, null, ioe);
    }

    // Process command line arguments.
    try {
        processArguments(args);
    } catch (ParseException pe) {
        // Report the problem and keep going.
        System.err.println("Option parsing failed: " + pe.getMessage());
        logger.log(Level.SEVERE, null, pe);
    }

    // Display a helpful greeting.
    output.println(NbBundle.getMessage(Main.class, "MSG_Main_Welcome"));
    if (jdbEmulationMode) {
        output.println(NbBundle.getMessage(Main.class, "MSG_Main_Jdb_Emulation"));
    }

    // Enter the main loop of processing user input.
    BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
    while (true) {
        // Keep the prompt format identical to jdb for compatibility
        // with emacs and other possible wrappers.
        output.print("> ");
        output.flush();
        try {
            String command = input.readLine();
            // A null value indicates end of stream.
            if (command != null) {
                performCommand(output, parser, command);
            }
            // Sleep briefly to give the event processing threads,
            // and the automatic output flushing, a chance to catch
            // up before printing the input prompt again.
            Thread.sleep(250);
        } catch (InterruptedException ie) {
            logger.log(Level.WARNING, null, ie);
        } catch (IOException ioe) {
            logger.log(Level.SEVERE, null, ioe);
            output.println(NbBundle.getMessage(Main.class, "ERR_Main_IOError", ioe));
        } catch (Exception x) {
            // Don't ever let an internal bug (e.g. in the command parser)
            // hork the console, as it really irritates people.
            logger.log(Level.SEVERE, null, x);
            output.println(NbBundle.getMessage(Main.class, "ERR_Main_Exception", x));
        }
    }
}

From source file:flashcrawler.FlashCrawler.java

/**
 * @param args the command line arguments
 *///from ww w .  j a va 2 s.co  m
public static void main(String[] args) throws FileNotFoundException {
    Scanner scn = new Scanner(new File("input.txt"));
    ArrayList<String> ins = new ArrayList();
    while (scn.hasNextLine()) {
        String input = scn.nextLine();
        ins.add(input);
    }

    String URL;
    PrintWriter writer = null;
    writer = new PrintWriter(new FileOutputStream(new File("error-log.txt"), true));

    String File;
    for (String name : ins) {
        File offlinePath = new File("/games/" + name + ".swf");
        String onlinePath = "http://wsh.gamib.com/x/" + name + "/" + name + ".swf";
        System.out.println("Downloading " + onlinePath + " into " + offlinePath);
        URL url = null;
        try {
            System.out.println("...");
            url = new URL(onlinePath);
        } catch (MalformedURLException ex) {
            System.out.println("Failed to create url object");
            writer.println("Error when creating url: " + onlinePath + "\tname");
        }
        try {
            System.out.println("...");
            FileUtils.copyURLToFile(url, offlinePath);
            System.out.println("Success.");
        } catch (IOException ex) {
            System.out.println("Error when downloading game: " + offlinePath);
            writer.println("Error when downloading game: " + offlinePath);
        }

    }
    writer.close();
    System.out.println("Process complete!");
}

From source file:ch.epfl.lsir.xin.test.SVDPPTest.java

/**
 * @param args//from   ww w .ja v  a 2 s .  c  o m
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SVDPP");

    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SVDPlusPlus.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt");
    loader.readSimple();
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>();
        HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>();
        for (int i = 0; i < dataset.getUserIDs().size(); i++) {
            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        }
        for (int i = 0; i < dataset.getItemIDs().size(); i++) {
            itemIDIndexMapping.put(dataset.getItemIDs().get(i), i);
        }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            if (testRatings.get(i).getValue() < 5)
                continue;
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a SVD++ recommendation model.");
        logger.flush();
        SVDPlusPlus algo = new SVDPlusPlus(trainRatingMatrix, false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()), false);
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        if (algo.getTopN() > 0) {
            HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>();
            for (int i = 0; i < trainRatingMatrix.getRow(); i++) {
                ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
                if (rec == null)
                    continue;
                int total = testRatingMatrix.getUserRatingNumber(i);
                if (total == 0)//this user is ignored
                    continue;
                results.put(i, rec);
            }
            RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix);
            precision = generator.getPrecisionN();
            totalPrecision = totalPrecision + precision;
            recall = generator.getRecallN();
            totalRecall = totalRecall + recall;
            map = generator.getMAPN();
            totalMAP = totalMAP + map;
            ndcg = generator.getNDCGN();
            totalNDCG = totalNDCG + ndcg;
            mrr = generator.getMRRN();
            totalMRR = totalMRR + mrr;
            auc = generator.getAUC();
            totalAUC = totalAUC + auc;
            System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
            logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map
                    + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}

From source file:com.kse.bigdata.main.Driver.java

public static void main(String[] args) throws Exception {
    /**********************************************************************************
     **    Merge the source files into one.                                          **
    /**    Should change the directories of each file before executing the program   **
    ***********************************************************************************/
    //        String inputFileDirectory = "/media/bk/??/BigData_Term_Project/Debug";
    //        String resultFileDirectory = "/media/bk/??/BigData_Term_Project/debug.csv";
    //        File resultFile = new File(resultFileDirectory);
    //        if(!resultFile.exists())
    //            new SourceFileMerger(inputFileDirectory, resultFileDirectory).mergeFiles();

    /**********************************************************************************
     * Hadoop Operation./*  w  w  w. j  a v a  2 s.  c o  m*/
     * Befort Start, Check the Length of Sequence We Want to Predict.
     **********************************************************************************/

    Configuration conf = new Configuration();

    //Enable MapReduce intermediate compression as Snappy
    conf.setBoolean("mapred.compress.map.output", true);
    conf.set("mapred.map.output.compression.codec", "org.apache.hadoop.io.compress.SnappyCodec");

    //Enable Profiling
    //conf.setBoolean("mapred.task.profile", true);

    String testPath = null;
    String inputPath = null;
    String outputPath = null;

    int sampleSize = 1;
    ArrayList<String> results = new ArrayList<String>();

    for (int index = 0; index < args.length; index++) {

        /*
         * Mandatory command
         */
        //Extract input path string from command line.
        if (args[index].equals("-in"))
            inputPath = args[index + 1];

        //Extract output path string from command line.
        if (args[index].equals("-out"))
            outputPath = args[index + 1];

        //Extract test data path string from command line.
        if (args[index].equals("-test"))
            testPath = args[index + 1];

        /*
         * Optional command
         */
        //Extract a number of neighbors.
        if (args[index].equals("-nn"))
            conf.setInt(Reduce.NUMBER_OF_NEAREAST_NEIGHBOR, Integer.parseInt(args[index + 1]));

        //Whether job uses normalization or not.
        if (args[index].equals("-norm"))
            conf.setBoolean(Map.NORMALIZATION, true);

        //Extract the number of sample size to test.
        if (args[index].equals("-s"))
            sampleSize = Integer.valueOf(args[index + 1]);

        //Whether job uses mean or median
        //[Default : mean]
        if (args[index].equals("-med"))
            conf.setBoolean(Reduce.MEDIAN, true);
    }

    String outputFileName = "part-r-00000";
    SequenceSampler sampler = new SequenceSampler(testPath, sampleSize);
    LinkedList<Sequence> testSequences = sampler.getRandomSample();

    //        Test Sequence
    //        String testSeqString = "13.591-13.674-13.778-13.892-13.958-14.049-14.153-14.185-14.169-14.092-13.905-13.702-13.438-13.187-13.0-12.914-12.868-12.766-12.62-12.433-12.279-12.142-12.063-12.025-100";
    //        Sequence testSeq = new Sequence(testSeqString);
    //        LinkedList<Sequence> testSequences = new LinkedList<>();
    //        testSequences.add(testSeq);

    for (Sequence seq : testSequences) {

        /*
         ********************  Hadoop Launch ***********************
         */

        System.out.println(seq.getTailString());

        conf.set(Map.INPUT_SEQUENCE, seq.toString());

        Job job = new Job(conf);
        job.setJarByClass(Driver.class);
        job.setJobName("term-project-driver");

        job.setMapperClass(Map.class);
        job.setMapOutputKeyClass(NullWritable.class);
        job.setMapOutputValueClass(Text.class);

        //          Should think another way to implement the combiner class
        //          Current Implementation is not helpful to Job.
        //          job.setCombinerClass(Combiner.class);

        //Set 1 for number of reduce task for keeping 100 most neighbors in sorted set.
        job.setNumReduceTasks(1);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));

        job.waitForCompletion(true);

        /*
         * if job finishes, get result of the job and store it in results(list).
         */
        try {
            FileSystem hdfs = FileSystem.get(new Configuration());
            BufferedReader fileReader = new BufferedReader(
                    new InputStreamReader(hdfs.open(new Path(outputPath + "/" + outputFileName))));

            String line;
            while ((line = fileReader.readLine()) != null) {
                results.add(seq.getSeqString() + " " + line);
            }

            fileReader.close();

            hdfs.delete(new Path(outputPath), true);
            hdfs.close();

        } catch (IOException e) {
            e.printStackTrace();
            System.exit(1);
        }
    }

    /*
     * if all jobs finish, store results of jobs to output/result.txt file.
     */
    String finalOutputPath = "output/result.csv";
    try {
        FileSystem hdfs = FileSystem.get(new Configuration());
        Path file = new Path(finalOutputPath);
        if (hdfs.exists(file)) {
            hdfs.delete(file, true);
        }

        OutputStream os = hdfs.create(file);
        PrintWriter printWriter = new PrintWriter(new OutputStreamWriter(os, "UTF-8"));

        //CSV File Header
        printWriter.println("Actual,Predicted,MER,MAE");
        printWriter.flush();

        for (String result : results) {
            String[] tokens = result.split("\\s+");

            printWriter.println(tokens[0] + "," + tokens[1] + "," + tokens[2] + "," + tokens[3]);
            printWriter.flush();
        }

        printWriter.close();
        hdfs.close();
    } catch (IOException e) {
        e.printStackTrace();
        System.exit(1);
    }

}

From source file:ch.epfl.lsir.xin.test.SocialRegTest.java

/**
 * @param args/*from  w ww . j  a  v  a 2s. c  o  m*/
 */
public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub

    PrintWriter logger = new PrintWriter(".//results//SocialReg");
    PropertiesConfiguration config = new PropertiesConfiguration();
    config.setFile(new File("conf//SocialReg.properties"));
    try {
        config.load();
    } catch (ConfigurationException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data...");
    logger.flush();
    DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt");
    loader.readSimple();
    //read social information
    loader.readRelation(".//data//Epinions-trust.txt");
    DataSetNumeric dataset = loader.getDataset();
    System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: "
            + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size());
    logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: "
            + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size());
    logger.flush();

    double totalMAE = 0;
    double totalRMSE = 0;
    double totalPrecision = 0;
    double totalRecall = 0;
    double totalMAP = 0;
    double totalNDCG = 0;
    double totalMRR = 0;
    double totalAUC = 0;
    int F = 5;
    logger.println(F + "- folder cross validation.");
    logger.flush();
    ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>();
    for (int i = 0; i < F; i++) {
        folders.add(new ArrayList<NumericRating>());
    }
    while (dataset.getRatings().size() > 0) {
        int index = new Random().nextInt(dataset.getRatings().size());
        int r = new Random().nextInt(F);
        folders.get(r).add(dataset.getRatings().get(index));
        dataset.getRatings().remove(index);
    }

    for (int folder = 1; folder <= F; folder++) {
        System.out.println("Folder: " + folder);
        logger.println("Folder: " + folder);
        logger.flush();
        ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>();
        ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>();
        for (int i = 0; i < folders.size(); i++) {
            if (i == folder - 1)//test data
            {
                testRatings.addAll(folders.get(i));
            } else {//training data
                trainRatings.addAll(folders.get(i));
            }
        }

        //create rating matrix
        HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping();
        HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping();
        //         for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ )
        //         {
        //            userIDIndexMapping.put(dataset.getUserIDs().get(i), i);
        //         }
        //         for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ )
        //         {
        //            itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i);
        //         }
        RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < trainRatings.size(); i++) {
            trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue());
        }
        RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(),
                dataset.getItemIDs().size());
        for (int i = 0; i < testRatings.size(); i++) {
            testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()),
                    itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue());
        }
        System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: "
                + testRatingMatrix.getTotalRatingNumber());

        logger.println("Initialize a social regularization recommendation model.");
        logger.flush();
        SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false,
                ".//localModels//" + config.getString("NAME"));
        algo.setLogger(logger);
        algo.build();
        algo.saveModel(".//localModels//" + config.getString("NAME"));
        logger.println("Save the model.");
        logger.flush();

        System.out.println(trainRatings.size() + " vs. " + testRatings.size());

        //rating prediction accuracy
        double RMSE = 0;
        double MAE = 0;
        double precision = 0;
        double recall = 0;
        double map = 0;
        double ndcg = 0;
        double mrr = 0;
        double auc = 0;
        int count = 0;
        for (int i = 0; i < testRatings.size(); i++) {
            NumericRating rating = testRatings.get(i);
            double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()),
                    itemIDIndexMapping.get(rating.getItemID()));
            if (prediction > algo.getMaxRating())
                prediction = algo.getMaxRating();
            if (prediction < algo.getMinRating())
                prediction = algo.getMinRating();
            if (Double.isNaN(prediction)) {
                System.out.println("no prediction");
                continue;
            }
            MAE = MAE + Math.abs(rating.getValue() - prediction);
            RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2);
            count++;
        }
        MAE = MAE / count;
        RMSE = Math.sqrt(RMSE / count);
        totalMAE = totalMAE + MAE;
        totalRMSE = totalRMSE + RMSE;
        System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE);
        logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: "
                + MAE + " RMSE: " + RMSE);
        //ranking accuracy
        //         if( algo.getTopN() > 0 )
        //         {
        //            HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>();
        //            for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ )
        //            {
        //               ArrayList<ResultUnit> rec = algo.getRecommendationList(i);
        //               results.put(i, rec);
        //            }
        //            RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix);
        //            precision = generator.getPrecisionN();
        //            totalPrecision = totalPrecision + precision;
        //            recall = generator.getRecallN();
        //            totalRecall = totalRecall + recall;
        //            map = generator.getMAPN();
        //            totalMAP = totalMAP + map;
        //            ndcg = generator.getNDCGN();
        //            totalNDCG = totalNDCG + ndcg;
        //            mrr = generator.getMRRN();
        //            totalMRR = totalMRR + mrr;
        //            auc = generator.getAUC();
        //            totalAUC = totalAUC + auc;
        //            System.out.println("Folder --- precision: " + precision + " recall: " + 
        //            recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc);
        //            logger.println("Folder --- precision: " + precision + " recall: " + 
        //                  recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + 
        //                  mrr + " auc: " + auc);
        //         }

        logger.flush();
    }

    System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F);
    System.out.println("Precision@N: " + totalPrecision / F);
    System.out.println("Recall@N: " + totalRecall / F);
    System.out.println("MAP@N: " + totalMAP / F);
    System.out.println("MRR@N: " + totalMRR / F);
    System.out.println("NDCG@N: " + totalNDCG / F);
    System.out.println("AUC@N: " + totalAUC / F);

    logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: "
            + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n"
            + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F
            + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F);
    logger.flush();
    logger.close();
}