List of usage examples for java.io PrintWriter flush
public void flush()
From source file:ch.epfl.lsir.xin.test.SocialRegTest.java
/** * @param args/*from w ww .j a v a 2 s . c om*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//SocialReg"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//SocialReg.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//Epinions-ratings.txt"); loader.readSimple(); //read social information loader.readRelation(".//data//Epinions-trust.txt"); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = dataset.getUserIDMapping(); HashMap<String, Integer> itemIDIndexMapping = dataset.getItemIDMapping(); // for( int i = 0 ; i < dataset.getUserIDs().size() ; i++ ) // { // userIDIndexMapping.put(dataset.getUserIDs().get(i), i); // } // for( int i = 0 ; i < dataset.getItemIDs().size() ; i++ ) // { // itemIDIndexMapping.put(dataset.getItemIDs().get(i) , i); // } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a social regularization recommendation model."); logger.flush(); SocialReg algo = new SocialReg(trainRatingMatrix, dataset.getRelationships(), false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); System.out.println(trainRatings.size() + " vs. " + testRatings.size()); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID())); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy // if( algo.getTopN() > 0 ) // { // HashMap<Integer , ArrayList<ResultUnit>> results = new HashMap<Integer , ArrayList<ResultUnit>>(); // for( int i = 0 ; i < trainRatingMatrix.getRow() ; i++ ) // { // ArrayList<ResultUnit> rec = algo.getRecommendationList(i); // results.put(i, rec); // } // RankResultGenerator generator = new RankResultGenerator(results , algo.getTopN() , testRatingMatrix); // precision = generator.getPrecisionN(); // totalPrecision = totalPrecision + precision; // recall = generator.getRecallN(); // totalRecall = totalRecall + recall; // map = generator.getMAPN(); // totalMAP = totalMAP + map; // ndcg = generator.getNDCGN(); // totalNDCG = totalNDCG + ndcg; // mrr = generator.getMRRN(); // totalMRR = totalMRR + mrr; // auc = generator.getAUC(); // totalAUC = totalAUC + auc; // System.out.println("Folder --- precision: " + precision + " recall: " + // recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); // logger.println("Folder --- precision: " + precision + " recall: " + // recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + // mrr + " auc: " + auc); // } logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:ch.epfl.lsir.xin.test.BiasedMFTest.java
/** * @param args/*from w ww . j ava 2s . c o m*/ */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//BiasedMF"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//biasedMF.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a biased matrix factorization recommendation model."); logger.flush(); BiasedMF algo = new BiasedMF(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:ch.epfl.lsir.xin.test.MFTest.java
/** * @param args// ww w. ja v a 2 s.c om */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//MF"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File("conf//MF.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); logger.flush(); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); double totalMAE = 0; double totalRMSE = 0; double totalPrecision = 0; double totalRecall = 0; double totalMAP = 0; double totalNDCG = 0; double totalMRR = 0; double totalAUC = 0; int F = 5; logger.println(F + "- folder cross validation."); logger.flush(); ArrayList<ArrayList<NumericRating>> folders = new ArrayList<ArrayList<NumericRating>>(); for (int i = 0; i < F; i++) { folders.add(new ArrayList<NumericRating>()); } while (dataset.getRatings().size() > 0) { int index = new Random().nextInt(dataset.getRatings().size()); int r = new Random().nextInt(F); folders.get(r).add(dataset.getRatings().get(index)); dataset.getRatings().remove(index); } for (int folder = 1; folder <= F; folder++) { System.out.println("Folder: " + folder); logger.println("Folder: " + folder); logger.flush(); ArrayList<NumericRating> trainRatings = new ArrayList<NumericRating>(); ArrayList<NumericRating> testRatings = new ArrayList<NumericRating>(); for (int i = 0; i < folders.size(); i++) { if (i == folder - 1)//test data { testRatings.addAll(folders.get(i)); } else {//training data trainRatings.addAll(folders.get(i)); } } //create rating matrix HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a matrix factorization based recommendation model."); logger.flush(); MatrixFactorization algo = new MatrixFactorization(trainRatingMatrix, false, ".//localModels//" + config.getString("NAME")); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); //rating prediction accuracy double RMSE = 0; double MAE = 0; double precision = 0; double recall = 0; double map = 0; double ndcg = 0; double mrr = 0; double auc = 0; int count = 0; for (int i = 0; i < testRatings.size(); i++) { NumericRating rating = testRatings.get(i); double prediction = algo.predict(userIDIndexMapping.get(rating.getUserID()), itemIDIndexMapping.get(rating.getItemID()), false); if (prediction > algo.getMaxRating()) prediction = algo.getMaxRating(); if (prediction < algo.getMinRating()) prediction = algo.getMinRating(); if (Double.isNaN(prediction)) { System.out.println("no prediction"); continue; } MAE = MAE + Math.abs(rating.getValue() - prediction); RMSE = RMSE + Math.pow((rating.getValue() - prediction), 2); count++; } MAE = MAE / count; RMSE = Math.sqrt(RMSE / count); totalMAE = totalMAE + MAE; totalRMSE = totalRMSE + RMSE; System.out.println("Folder --- MAE: " + MAE + " RMSE: " + RMSE); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Folder --- MAE: " + MAE + " RMSE: " + RMSE); //ranking accuracy if (algo.getTopN() > 0) { HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < trainRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); // for( Map.Entry<Integer, Double> entry : testRatingMatrix.getRatingMatrix().get(i).entrySet() ) // { // System.out.print( entry.getKey() + "(" + entry.getValue() + ") , "); // } // System.out.println(); // for( int j = 0 ; j < rec.size() ; j++ ) // { // System.out.print(rec.get(j).getItemIndex() + "(" + rec.get(j).getPrediciton() + // ") , "); // } // System.out.println("**********"); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); precision = generator.getPrecisionN(); totalPrecision = totalPrecision + precision; recall = generator.getRecallN(); totalRecall = totalRecall + recall; map = generator.getMAPN(); totalMAP = totalMAP + map; ndcg = generator.getNDCGN(); totalNDCG = totalNDCG + ndcg; mrr = generator.getMRRN(); totalMRR = totalMRR + mrr; auc = generator.getAUC(); totalAUC = totalAUC + auc; System.out.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); logger.println("Folder --- precision: " + precision + " recall: " + recall + " map: " + map + " ndcg: " + ndcg + " mrr: " + mrr + " auc: " + auc); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " MAE: " + MAE + " RMSE: " + RMSE); logger.flush(); } System.out.println("MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F); System.out.println("Precision@N: " + totalPrecision / F); System.out.println("Recall@N: " + totalRecall / F); System.out.println("MAP@N: " + totalMAP / F); System.out.println("MRR@N: " + totalMRR / F); System.out.println("NDCG@N: " + totalNDCG / F); System.out.println("AUC@N: " + totalAUC / F); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "MAE: " + totalMAE / F + " RMSE: " + totalRMSE / F + "\n" + "Precision@N: " + totalPrecision / F + "\n" + "Recall@N: " + totalRecall / F + "\n" + "MAP@N: " + totalMAP / F + "\n" + "MRR@N: " + totalMRR / F + "\n" + "NDCG@N: " + totalNDCG / F + "\n" + "AUC@N: " + totalAUC / F); logger.flush(); logger.close(); }
From source file:mx.unam.ecologia.gye.coalescence.app.RunExperiments.java
public static void main(String[] args) { BasicConfigurator.configure();//from w w w .j av a 2 s. c o m SimulationParameters params = new SimulationParameters(args); //loop int num_beta = params.getBetaCount(); int num_k = params.getKCount(); int num_N = params.getNCount(); int num_u = params.getUCount(); PrintWriter pw; try { File csv = new File(params.getOutput()); FileOutputStream fout = new FileOutputStream(csv); pw = new PrintWriter(fout); } catch (Exception ex) { pw = new PrintWriter(System.out); } for (int l = 0; l < num_beta; l++) { params.selectBeta(l); for (int m = 0; m < num_N; m++) { params.selectN(m); for (int n = 0; n < num_k; n++) { params.selectK(n); for (int o = 0; o < num_u; o++) { params.selectU(o); MicrosatelliteExperiment exp = new MicrosatelliteExperiment(params); if (m + n + o == 0) { pw.println(exp.getCSVHeader()); pw.flush(); } exp.init(); exp.run(); pw.println(exp.resultsToCSV()); pw.flush(); System.gc(); } //for u } //for k } //for N } //for beta }
From source file:com.occamlab.te.parsers.ImageParser.java
public static void main(String[] args) throws Exception { if (args.length < 2) { System.err.println("Parameters: xml_url image_url"); return;//from w w w. j a v a 2 s . co m } java.net.URL xml_url; try { xml_url = new java.net.URL(args[0]); } catch (Exception e) { jlogger.log(Level.INFO, "Error building xmlurl, will prefix file://", e); xml_url = new java.net.URL("file://" + args[0]); } java.net.URL image_url; try { image_url = new java.net.URL(args[1]); } catch (Exception e) { jlogger.log(Level.INFO, "Error building xmlurl, will prefix file://", e); image_url = new java.net.URL("file://" + args[1]); } DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); dbf.setNamespaceAware(true); DocumentBuilder db = dbf.newDocumentBuilder(); Document doc = db.parse(xml_url.openStream()); // Element instruction = (Element) // doc.getElementsByTagNameNS("http://www.occamlab.com/te/parsers", // "ImageParser").item(0); Element instruction = (Element) doc.getDocumentElement(); PrintWriter logger = new PrintWriter(System.out); InputStream image_is = image_url.openConnection().getInputStream(); Document result = parse(image_is, instruction, logger); logger.flush(); if (result != null) { TransformerFactory tf = TransformerFactory.newInstance(); try { tf.setAttribute("http://saxon.sf.net/feature/strip-whitespace", "all"); } catch (IllegalArgumentException e) { jlogger.log(Level.INFO, "setAttribute(\"http://saxon.sf.net/feature/strip-whitespace\", \"all\");", e); } Transformer t = tf.newTransformer(); t.setOutputProperty(OutputKeys.INDENT, "yes"); t.transform(new DOMSource(result), new StreamResult(System.out)); } System.exit(0); }
From source file:GenericClient.java
public static void main(String[] args) throws IOException { try {/*w w w . j av a 2 s .c om*/ // Check the number of arguments if (args.length != 2) throw new IllegalArgumentException("Wrong number of args"); // Parse the host and port specifications String host = args[0]; int port = Integer.parseInt(args[1]); // Connect to the specified host and port Socket s = new Socket(host, port); // Set up streams for reading from and writing to the server. // The from_server stream is final for use in the inner class below final Reader from_server = new InputStreamReader(s.getInputStream()); PrintWriter to_server = new PrintWriter(s.getOutputStream()); // Set up streams for reading from and writing to the console // The to_user stream is final for use in the anonymous class below BufferedReader from_user = new BufferedReader(new InputStreamReader(System.in)); // Pass true for auto-flush on println() final PrintWriter to_user = new PrintWriter(System.out, true); // Tell the user that we've connected to_user.println("Connected to " + s.getInetAddress() + ":" + s.getPort()); // Create a thread that gets output from the server and displays // it to the user. We use a separate thread for this so that we // can receive asynchronous output Thread t = new Thread() { public void run() { char[] buffer = new char[1024]; int chars_read; try { // Read characters from the server until the // stream closes, and write them to the console while ((chars_read = from_server.read(buffer)) != -1) { to_user.write(buffer, 0, chars_read); to_user.flush(); } } catch (IOException e) { to_user.println(e); } // When the server closes the connection, the loop above // will end. Tell the user what happened, and call // System.exit(), causing the main thread to exit along // with this one. to_user.println("Connection closed by server."); System.exit(0); } }; // Now start the server-to-user thread t.start(); // In parallel, read the user's input and pass it on to the server. String line; while ((line = from_user.readLine()) != null) { to_server.print(line + "\r\n"); to_server.flush(); } // If the user types a Ctrl-D (Unix) or Ctrl-Z (Windows) to end // their input, we'll get an EOF, and the loop above will exit. // When this happens, we stop the server-to-user thread and close // the socket. s.close(); to_user.println("Connection closed by client."); System.exit(0); } // If anything goes wrong, print an error message catch (Exception e) { System.err.println(e); System.err.println("Usage: java GenericClient <hostname> <port>"); } }
From source file:be.dnsbelgium.rdap.client.RDAPCLI.java
public static void main(String[] args) { LOGGER.debug("Create the command line parser"); CommandLineParser parser = new GnuParser(); LOGGER.debug("Create the options"); Options options = new RDAPOptions(Locale.ENGLISH); try {/*from w w w .ja v a2 s .c om*/ LOGGER.debug("Parse the command line arguments"); CommandLine line = parser.parse(options, args); if (line.hasOption("help")) { printHelp(options); return; } if (line.getArgs().length == 0) { throw new IllegalArgumentException("You must provide a query"); } String query = line.getArgs()[0]; Type type = (line.getArgs().length == 2) ? Type.valueOf(line.getArgs()[1].toUpperCase()) : guessQueryType(query); LOGGER.debug("Query: {}, Type: {}", query, type); try { SSLContextBuilder sslContextBuilder = SSLContexts.custom(); if (line.hasOption(RDAPOptions.TRUSTSTORE)) { sslContextBuilder.loadTrustMaterial( RDAPClient.getKeyStoreFromFile(new File(line.getOptionValue(RDAPOptions.TRUSTSTORE)), line.getOptionValue(RDAPOptions.TRUSTSTORE_TYPE, RDAPOptions.DEFAULT_STORETYPE), line.getOptionValue(RDAPOptions.TRUSTSTORE_PASS, RDAPOptions.DEFAULT_PASS))); } if (line.hasOption(RDAPOptions.KEYSTORE)) { sslContextBuilder.loadKeyMaterial( RDAPClient.getKeyStoreFromFile(new File(line.getOptionValue(RDAPOptions.KEYSTORE)), line.getOptionValue(RDAPOptions.KEYSTORE_TYPE, RDAPOptions.DEFAULT_STORETYPE), line.getOptionValue(RDAPOptions.KEYSTORE_PASS, RDAPOptions.DEFAULT_PASS)), line.getOptionValue(RDAPOptions.KEYSTORE_PASS, RDAPOptions.DEFAULT_PASS).toCharArray()); } SSLContext sslContext = sslContextBuilder.build(); final String url = line.getOptionValue(RDAPOptions.URL); final HttpHost host = Utils.httpHost(url); HashSet<Header> headers = new HashSet<Header>(); headers.add(new BasicHeader("Accept-Language", line.getOptionValue(RDAPOptions.LANG, Locale.getDefault().toString()))); HttpClientBuilder httpClientBuilder = HttpClients.custom().setDefaultHeaders(headers) .setSSLSocketFactory(new SSLConnectionSocketFactory(sslContext, (line.hasOption(RDAPOptions.INSECURE) ? new AllowAllHostnameVerifier() : new BrowserCompatHostnameVerifier()))); if (line.hasOption(RDAPOptions.USERNAME) && line.hasOption(RDAPOptions.PASSWORD)) { BasicCredentialsProvider credentialsProvider = new BasicCredentialsProvider(); credentialsProvider.setCredentials(new AuthScope(host.getHostName(), host.getPort()), new UsernamePasswordCredentials(line.getOptionValue(RDAPOptions.USERNAME), line.getOptionValue(RDAPOptions.PASSWORD))); httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider); } RDAPClient rdapClient = new RDAPClient(httpClientBuilder.build(), url); ObjectMapper mapper = new ObjectMapper(); JsonNode json = null; switch (type) { case DOMAIN: json = rdapClient.getDomainAsJson(query); break; case ENTITY: json = rdapClient.getEntityAsJson(query); break; case AUTNUM: json = rdapClient.getAutNum(query); break; case IP: json = rdapClient.getIp(query); break; case NAMESERVER: json = rdapClient.getNameserver(query); break; } PrintWriter out = new PrintWriter(System.out, true); if (line.hasOption(RDAPOptions.RAW)) { mapper.writer().writeValue(out, json); } else if (line.hasOption(RDAPOptions.PRETTY)) { mapper.writer(new DefaultPrettyPrinter()).writeValue(out, json); } else if (line.hasOption(RDAPOptions.YAML)) { DumperOptions dumperOptions = new DumperOptions(); dumperOptions.setPrettyFlow(true); dumperOptions.setDefaultFlowStyle(DumperOptions.FlowStyle.BLOCK); dumperOptions.setSplitLines(true); Yaml yaml = new Yaml(dumperOptions); Map data = mapper.convertValue(json, Map.class); yaml.dump(data, out); } else { mapper.writer(new MinimalPrettyPrinter()).writeValue(out, json); } out.flush(); } catch (Exception e) { LOGGER.error(e.getMessage(), e); System.exit(-1); } } catch (org.apache.commons.cli.ParseException e) { printHelp(options); System.exit(-1); } }
From source file:edu.usc.ee599.CommunityStats.java
public static void main(String[] args) throws Exception { File dir = new File("results5"); PrintWriter writer = new PrintWriter(new FileWriter("results5_stats.txt")); File[] files = dir.listFiles(); DescriptiveStatistics statistics1 = new DescriptiveStatistics(); DescriptiveStatistics statistics2 = new DescriptiveStatistics(); for (File file : files) { BufferedReader reader = new BufferedReader(new FileReader(file)); String line1 = reader.readLine(); String line2 = reader.readLine(); int balanced = Integer.parseInt(line1.split(",")[1]); int unbalanced = Integer.parseInt(line2.split(",")[1]); double bp = (double) balanced / (double) (balanced + unbalanced); double up = (double) unbalanced / (double) (balanced + unbalanced); statistics1.addValue(bp);// w w w . jav a2 s. c o m statistics2.addValue(up); } writer.println("AVG Balanced %: " + statistics1.getMean()); writer.println("AVG Unbalanced %: " + statistics2.getMean()); writer.println("STD Balanced %: " + statistics1.getStandardDeviation()); writer.println("STD Unbalanced %: " + statistics2.getStandardDeviation()); writer.flush(); writer.close(); }
From source file:ch.epfl.lsir.xin.test.MostPopularTest.java
/** * @param args//from w w w. ja v a 2 s.c om */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub PrintWriter logger = new PrintWriter(".//results//MostPopular"); PropertiesConfiguration config = new PropertiesConfiguration(); config.setFile(new File(".//conf//MostPopular.properties")); try { config.load(); } catch (ConfigurationException e) { // TODO Auto-generated catch block e.printStackTrace(); } logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + " Read rating data..."); DataLoaderFile loader = new DataLoaderFile(".//data//MoveLens100k.txt"); loader.readSimple(); DataSetNumeric dataset = loader.getDataset(); System.out.println("Number of ratings: " + dataset.getRatings().size() + " Number of users: " + dataset.getUserIDs().size() + " Number of items: " + dataset.getItemIDs().size()); logger.println("Number of ratings: " + dataset.getRatings().size() + ", Number of users: " + dataset.getUserIDs().size() + ", Number of items: " + dataset.getItemIDs().size()); logger.flush(); TrainTestSplitter splitter = new TrainTestSplitter(dataset); splitter.splitFraction(config.getDouble("TRAIN_FRACTION")); ArrayList<NumericRating> trainRatings = splitter.getTrain(); ArrayList<NumericRating> testRatings = splitter.getTest(); HashMap<String, Integer> userIDIndexMapping = new HashMap<String, Integer>(); HashMap<String, Integer> itemIDIndexMapping = new HashMap<String, Integer>(); //create rating matrix for (int i = 0; i < dataset.getUserIDs().size(); i++) { userIDIndexMapping.put(dataset.getUserIDs().get(i), i); } for (int i = 0; i < dataset.getItemIDs().size(); i++) { itemIDIndexMapping.put(dataset.getItemIDs().get(i), i); } RatingMatrix trainRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < trainRatings.size(); i++) { trainRatingMatrix.set(userIDIndexMapping.get(trainRatings.get(i).getUserID()), itemIDIndexMapping.get(trainRatings.get(i).getItemID()), trainRatings.get(i).getValue()); } RatingMatrix testRatingMatrix = new RatingMatrix(dataset.getUserIDs().size(), dataset.getItemIDs().size()); for (int i = 0; i < testRatings.size(); i++) { //only consider 5-star rating in the test set // if( testRatings.get(i).getValue() < 5 ) // continue; testRatingMatrix.set(userIDIndexMapping.get(testRatings.get(i).getUserID()), itemIDIndexMapping.get(testRatings.get(i).getItemID()), testRatings.get(i).getValue()); } System.out.println("Training: " + trainRatingMatrix.getTotalRatingNumber() + " vs Test: " + testRatingMatrix.getTotalRatingNumber()); logger.println("Initialize a most popular based recommendation model."); MostPopular algo = new MostPopular(trainRatingMatrix); algo.setLogger(logger); algo.build(); algo.saveModel(".//localModels//" + config.getString("NAME")); logger.println("Save the model."); logger.flush(); HashMap<Integer, ArrayList<ResultUnit>> results = new HashMap<Integer, ArrayList<ResultUnit>>(); for (int i = 0; i < testRatingMatrix.getRow(); i++) { ArrayList<ResultUnit> rec = algo.getRecommendationList(i); if (rec == null) continue; int total = testRatingMatrix.getUserRatingNumber(i); if (total == 0)//this user is ignored continue; results.put(i, rec); } RankResultGenerator generator = new RankResultGenerator(results, algo.getTopN(), testRatingMatrix, trainRatingMatrix); System.out.println("Precision@N: " + generator.getPrecisionN()); System.out.println("Recall@N: " + generator.getRecallN()); System.out.println("MAP@N: " + generator.getMAPN()); System.out.println("MRR@N: " + generator.getMRRN()); System.out.println("NDCG@N: " + generator.getNDCGN()); System.out.println("AUC@N: " + generator.getAUC()); logger.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()) + "\n" + "Precision@N: " + generator.getPrecisionN() + "\n" + "Recall@N: " + generator.getRecallN() + "\n" + "MAP@N: " + generator.getMAPN() + "\n" + "MRR@N: " + generator.getMRRN() + "\n" + "NDCG@N: " + generator.getNDCGN() + "\n" + "AUC@N: " + generator.getAUC()); logger.flush(); logger.close(); }
From source file:it.tidalwave.imageio.example.stats.FocalLengthStats.java
public static void main(final String[] args) { try {//from w w w . j a va 2 s.c o m final PrintWriter out = new PrintWriter(new File(args[1])); new DirectoryWalker() { @Override protected void handleFile(final File file, final int depth, final Collection results) throws IOException { if (file.getName().toUpperCase().endsWith(".NEF")) { System.out.printf("Processing %s...\n", file.getCanonicalPath()); final ImageReader reader = (ImageReader) ImageIO.getImageReaders(file).next(); reader.setInput(ImageIO.createImageInputStream(file)); final IIOMetadata metadata = reader.getImageMetadata(0); final NEFMetadata nefMetadata = (NEFMetadata) metadata; final IFD exifIFD = nefMetadata.getExifIFD(); final TagRational focalLength = exifIFD.getFocalLength(); out.println(focalLength.doubleValue()); } } public void start() throws IOException { super.walk(new File(args[0]), new ArrayList<Object>()); } }.start(); out.flush(); out.close(); } catch (Exception e) { e.printStackTrace(); } }