Android Binomial Coefficient binomialCoefficientDouble(final int n, final int k)

Here you can find the source of binomialCoefficientDouble(final int n, final int k)

Description

Returns a double representation of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial Coefficient</a>, " n choose k ", the number of k -element subsets that can be selected from an n -element set.

License

Apache License

Parameter

Parameter Description
n the size of the set
k the size of the subsets to be counted

Exception

Parameter Description
NotPositiveException if n < 0.
NumberIsTooLargeException if k > n.
MathArithmeticException if the result is too large to berepresented by a long integer.

Return

n choose k

Declaration

public static double binomialCoefficientDouble(final int n, final int k)
        throws NotPositiveException, NumberIsTooLargeException,
        MathArithmeticException 

Method Source Code

/*//w  ww .  j a v  a  2  s  .c om
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.math.BigInteger;
import java.util.concurrent.atomic.AtomicReference;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.Localizable;
import org.apache.commons.math3.exception.util.LocalizedFormats;

public class Main{
    /**
     * Returns a {@code double} representation of the <a
     * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
     * Coefficient</a>, "{@code n choose k}", the number of
     * {@code k}-element subsets that can be selected from an
     * {@code n}-element set.
     * <p>
     * <Strong>Preconditions</strong>:
     * <ul>
     * <li> {@code 0 <= k <= n } (otherwise
     * {@code IllegalArgumentException} is thrown)</li>
     * <li> The result is small enough to fit into a {@code double}. The
     * largest value of {@code n} for which all coefficients are <
     * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
     * Double.POSITIVE_INFINITY is returned</li>
     * </ul></p>
     *
     * @param n the size of the set
     * @param k the size of the subsets to be counted
     * @return {@code n choose k}
     * @throws NotPositiveException if {@code n < 0}.
     * @throws NumberIsTooLargeException if {@code k > n}.
     * @throws MathArithmeticException if the result is too large to be
     * represented by a long integer.
     */
    public static double binomialCoefficientDouble(final int n, final int k)
            throws NotPositiveException, NumberIsTooLargeException,
            MathArithmeticException {
        ArithmeticUtils.checkBinomial(n, k);
        if ((n == k) || (k == 0)) {
            return 1d;
        }
        if ((k == 1) || (k == n - 1)) {
            return n;
        }
        if (k > n / 2) {
            return binomialCoefficientDouble(n, n - k);
        }
        if (n < 67) {
            return binomialCoefficient(n, k);
        }

        double result = 1d;
        for (int i = 1; i <= k; i++) {
            result *= (double) (n - k + i) / (double) i;
        }

        return FastMath.floor(result + 0.5);
    }
    /**
     * Check binomial preconditions.
     *
     * @param n Size of the set.
     * @param k Size of the subsets to be counted.
     * @throws NotPositiveException if {@code n < 0}.
     * @throws NumberIsTooLargeException if {@code k > n}.
     */
    private static void checkBinomial(final int n, final int k)
            throws NumberIsTooLargeException, NotPositiveException {
        if (n < k) {
            throw new NumberIsTooLargeException(
                    LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER, k,
                    n, true);
        }
        if (n < 0) {
            throw new NotPositiveException(
                    LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n);
        }
    }
    /**
     * Returns an exact representation of the <a
     * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
     * Coefficient</a>, "{@code n choose k}", the number of
     * {@code k}-element subsets that can be selected from an
     * {@code n}-element set.
     * <p>
     * <Strong>Preconditions</strong>:
     * <ul>
     * <li> {@code 0 <= k <= n } (otherwise
     * {@code IllegalArgumentException} is thrown)</li>
     * <li> The result is small enough to fit into a {@code long}. The
     * largest value of {@code n} for which all coefficients are
     * {@code  < Long.MAX_VALUE} is 66. If the computed value exceeds
     * {@code Long.MAX_VALUE} an {@code ArithMeticException} is
     * thrown.</li>
     * </ul></p>
     *
     * @param n the size of the set
     * @param k the size of the subsets to be counted
     * @return {@code n choose k}
     * @throws NotPositiveException if {@code n < 0}.
     * @throws NumberIsTooLargeException if {@code k > n}.
     * @throws MathArithmeticException if the result is too large to be
     * represented by a long integer.
     */
    public static long binomialCoefficient(final int n, final int k)
            throws NotPositiveException, NumberIsTooLargeException,
            MathArithmeticException {
        ArithmeticUtils.checkBinomial(n, k);
        if ((n == k) || (k == 0)) {
            return 1;
        }
        if ((k == 1) || (k == n - 1)) {
            return n;
        }
        // Use symmetry for large k
        if (k > n / 2) {
            return binomialCoefficient(n, n - k);
        }

        // We use the formula
        // (n choose k) = n! / (n-k)! / k!
        // (n choose k) == ((n-k+1)*...*n) / (1*...*k)
        // which could be written
        // (n choose k) == (n-1 choose k-1) * n / k
        long result = 1;
        if (n <= 61) {
            // For n <= 61, the naive implementation cannot overflow.
            int i = n - k + 1;
            for (int j = 1; j <= k; j++) {
                result = result * i / j;
                i++;
            }
        } else if (n <= 66) {
            // For n > 61 but n <= 66, the result cannot overflow,
            // but we must take care not to overflow intermediate values.
            int i = n - k + 1;
            for (int j = 1; j <= k; j++) {
                // We know that (result * i) is divisible by j,
                // but (result * i) may overflow, so we split j:
                // Filter out the gcd, d, so j/d and i/d are integer.
                // result is divisible by (j/d) because (j/d)
                // is relative prime to (i/d) and is a divisor of
                // result * (i/d).
                final long d = gcd(i, j);
                result = (result / (j / d)) * (i / d);
                i++;
            }
        } else {
            // For n > 66, a result overflow might occur, so we check
            // the multiplication, taking care to not overflow
            // unnecessary.
            int i = n - k + 1;
            for (int j = 1; j <= k; j++) {
                final long d = gcd(i, j);
                result = mulAndCheck(result / (j / d), i / d);
                i++;
            }
        }
        return result;
    }
    /**
     * Computes the greatest common divisor of the absolute value of two
     * numbers, using a modified version of the "binary gcd" method.
     * See Knuth 4.5.2 algorithm B.
     * The algorithm is due to Josef Stein (1961).
     * <br/>
     * Special cases:
     * <ul>
     *  <li>The invocations
     *   {@code gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)},
     *   {@code gcd(Integer.MIN_VALUE, 0)} and
     *   {@code gcd(0, Integer.MIN_VALUE)} throw an
     *   {@code ArithmeticException}, because the result would be 2^31, which
     *   is too large for an int value.</li>
     *  <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
     *   {@code gcd(x, 0)} is the absolute value of {@code x}, except
     *   for the special cases above.</li>
     *  <li>The invocation {@code gcd(0, 0)} is the only one which returns
     *   {@code 0}.</li>
     * </ul>
     *
     * @param p Number.
     * @param q Number.
     * @return the greatest common divisor (never negative).
     * @throws MathArithmeticException if the result cannot be represented as
     * a non-negative {@code int} value.
     * @since 1.1
     */
    public static int gcd(int p, int q) throws MathArithmeticException {
        int a = p;
        int b = q;
        if (a == 0 || b == 0) {
            if (a == Integer.MIN_VALUE || b == Integer.MIN_VALUE) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
            }
            return FastMath.abs(a + b);
        }

        long al = a;
        long bl = b;
        boolean useLong = false;
        if (a < 0) {
            if (Integer.MIN_VALUE == a) {
                useLong = true;
            } else {
                a = -a;
            }
            al = -al;
        }
        if (b < 0) {
            if (Integer.MIN_VALUE == b) {
                useLong = true;
            } else {
                b = -b;
            }
            bl = -bl;
        }
        if (useLong) {
            if (al == bl) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
            }
            long blbu = bl;
            bl = al;
            al = blbu % al;
            if (al == 0) {
                if (bl > Integer.MAX_VALUE) {
                    throw new MathArithmeticException(
                            LocalizedFormats.GCD_OVERFLOW_32_BITS, p, q);
                }
                return (int) bl;
            }
            blbu = bl;

            // Now "al" and "bl" fit in an "int".
            b = (int) al;
            a = (int) (blbu % al);
        }

        return gcdPositive(a, b);
    }
    /**
     * <p>
     * Gets the greatest common divisor of the absolute value of two numbers,
     * using the "binary gcd" method which avoids division and modulo
     * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
     * Stein (1961).
     * </p>
     * Special cases:
     * <ul>
     * <li>The invocations
     * {@code gcd(Long.MIN_VALUE, Long.MIN_VALUE)},
     * {@code gcd(Long.MIN_VALUE, 0L)} and
     * {@code gcd(0L, Long.MIN_VALUE)} throw an
     * {@code ArithmeticException}, because the result would be 2^63, which
     * is too large for a long value.</li>
     * <li>The result of {@code gcd(x, x)}, {@code gcd(0L, x)} and
     * {@code gcd(x, 0L)} is the absolute value of {@code x}, except
     * for the special cases above.
     * <li>The invocation {@code gcd(0L, 0L)} is the only one which returns
     * {@code 0L}.</li>
     * </ul>
     *
     * @param p Number.
     * @param q Number.
     * @return the greatest common divisor, never negative.
     * @throws MathArithmeticException if the result cannot be represented as
     * a non-negative {@code long} value.
     * @since 2.1
     */
    public static long gcd(final long p, final long q)
            throws MathArithmeticException {
        long u = p;
        long v = q;
        if ((u == 0) || (v == 0)) {
            if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)) {
                throw new MathArithmeticException(
                        LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q);
            }
            return FastMath.abs(u) + FastMath.abs(v);
        }
        // keep u and v negative, as negative integers range down to
        // -2^63, while positive numbers can only be as large as 2^63-1
        // (i.e. we can't necessarily negate a negative number without
        // overflow)
        /* assert u!=0 && v!=0; */
        if (u > 0) {
            u = -u;
        } // make u negative
        if (v > 0) {
            v = -v;
        } // make v negative
          // B1. [Find power of 2]
        int k = 0;
        while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are
                                                         // both even...
            u /= 2;
            v /= 2;
            k++; // cast out twos.
        }
        if (k == 63) {
            throw new MathArithmeticException(
                    LocalizedFormats.GCD_OVERFLOW_64_BITS, p, q);
        }
        // B2. Initialize: u and v have been divided by 2^k and at least
        // one is odd.
        long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
        // t negative: u was odd, v may be even (t replaces v)
        // t positive: u was even, v is odd (t replaces u)
        do {
            /* assert u<0 && v<0; */
            // B4/B3: cast out twos from t.
            while ((t & 1) == 0) { // while t is even..
                t /= 2; // cast out twos
            }
            // B5 [reset max(u,v)]
            if (t > 0) {
                u = -t;
            } else {
                v = t;
            }
            // B6/B3. at this point both u and v should be odd.
            t = (v - u) / 2;
            // |u| larger: t positive (replace u)
            // |v| larger: t negative (replace v)
        } while (t != 0);
        return -u * (1L << k); // gcd is u*2^k
    }
    /**
     * Multiply two integers, checking for overflow.
     *
     * @param x Factor.
     * @param y Factor.
     * @return the product {@code x * y}.
     * @throws MathArithmeticException if the result can not be
     * represented as an {@code int}.
     * @since 1.1
     */
    public static int mulAndCheck(int x, int y)
            throws MathArithmeticException {
        long m = ((long) x) * ((long) y);
        if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
            throw new MathArithmeticException();
        }
        return (int) m;
    }
    /**
     * Multiply two long integers, checking for overflow.
     *
     * @param a Factor.
     * @param b Factor.
     * @return the product {@code a * b}.
     * @throws MathArithmeticException if the result can not be represented
     * as a {@code long}.
     * @since 1.2
     */
    public static long mulAndCheck(long a, long b)
            throws MathArithmeticException {
        long ret;
        if (a > b) {
            // use symmetry to reduce boundary cases
            ret = mulAndCheck(b, a);
        } else {
            if (a < 0) {
                if (b < 0) {
                    // check for positive overflow with negative a, negative b
                    if (a >= Long.MAX_VALUE / b) {
                        ret = a * b;
                    } else {
                        throw new MathArithmeticException();
                    }
                } else if (b > 0) {
                    // check for negative overflow with negative a, positive b
                    if (Long.MIN_VALUE / b <= a) {
                        ret = a * b;
                    } else {
                        throw new MathArithmeticException();

                    }
                } else {
                    // assert b == 0
                    ret = 0;
                }
            } else if (a > 0) {
                // assert a > 0
                // assert b > 0

                // check for positive overflow with positive a, positive b
                if (a <= Long.MAX_VALUE / b) {
                    ret = a * b;
                } else {
                    throw new MathArithmeticException();
                }
            } else {
                // assert a == 0
                ret = 0;
            }
        }
        return ret;
    }
    /**
     * Computes the greatest common divisor of two <em>positive</em> numbers
     * (this precondition is <em>not</em> checked and the result is undefined
     * if not fulfilled) using the "binary gcd" method which avoids division
     * and modulo operations.
     * See Knuth 4.5.2 algorithm B.
     * The algorithm is due to Josef Stein (1961).
     * <br/>
     * Special cases:
     * <ul>
     *  <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and
     *   {@code gcd(x, 0)} is the value of {@code x}.</li>
     *  <li>The invocation {@code gcd(0, 0)} is the only one which returns
     *   {@code 0}.</li>
     * </ul>
     *
     * @param a Positive number.
     * @param b Positive number.
     * @return the greatest common divisor.
     */
    private static int gcdPositive(int a, int b) {
        if (a == 0) {
            return b;
        } else if (b == 0) {
            return a;
        }

        // Make "a" and "b" odd, keeping track of common power of 2.
        final int aTwos = Integer.numberOfTrailingZeros(a);
        a >>= aTwos;
        final int bTwos = Integer.numberOfTrailingZeros(b);
        b >>= bTwos;
        final int shift = Math.min(aTwos, bTwos);

        // "a" and "b" are positive.
        // If a > b then "gdc(a, b)" is equal to "gcd(a - b, b)".
        // If a < b then "gcd(a, b)" is equal to "gcd(b - a, a)".
        // Hence, in the successive iterations:
        //  "a" becomes the absolute difference of the current values,
        //  "b" becomes the minimum of the current values.
        while (a != b) {
            final int delta = a - b;
            b = Math.min(a, b);
            a = Math.abs(delta);

            // Remove any power of 2 in "a" ("b" is guaranteed to be odd).
            a >>= Integer.numberOfTrailingZeros(a);
        }

        // Recover the common power of 2.
        return a << shift;
    }
}

Related

  1. binomialCoefficient(final int n, final int k)
  2. binomialCoefficientLog(final int n, final int k)
  3. checkBinomial(final int n, final int k)