Back to project page downtown.
The source code is released under:
GNU General Public License
If you think the Android project downtown listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
/* * Copyright 2013 Google Inc.// w w w . j a va2 s .c om * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.maps.android; import com.google.android.gms.maps.model.LatLng; import java.util.List; import java.util.ArrayList; import static java.lang.Math.*; import static com.google.maps.android.MathUtil.*; public class PolyUtil { private PolyUtil() {} /** * Returns tan(latitude-at-lng3) on the great circle (lat1, lng1) to (lat2, lng2). lng1==0. * See http://williams.best.vwh.net/avform.htm . */ private static double tanLatGC(double lat1, double lat2, double lng2, double lng3) { return (tan(lat1) * sin(lng2 - lng3) + tan(lat2) * sin(lng3)) / sin(lng2); } /** * Returns mercator(latitude-at-lng3) on the Rhumb line (lat1, lng1) to (lat2, lng2). lng1==0. */ private static double mercatorLatRhumb(double lat1, double lat2, double lng2, double lng3) { return (mercator(lat1) * (lng2 - lng3) + mercator(lat2) * lng3) / lng2; } /** * Computes whether the vertical segment (lat3, lng3) to South Pole intersects the segment * (lat1, lng1) to (lat2, lng2). * Longitudes are offset by -lng1; the implicit lng1 becomes 0. */ private static boolean intersects(double lat1, double lat2, double lng2, double lat3, double lng3, boolean geodesic) { // Both ends on the same side of lng3. if ((lng3 >= 0 && lng3 >= lng2) || (lng3 < 0 && lng3 < lng2)) { return false; } // Point is South Pole. if (lat3 <= -PI/2) { return false; } // Any segment end is a pole. if (lat1 <= -PI/2 || lat2 <= -PI/2 || lat1 >= PI/2 || lat2 >= PI/2) { return false; } if (lng2 <= -PI) { return false; } double linearLat = (lat1 * (lng2 - lng3) + lat2 * lng3) / lng2; // Northern hemisphere and point under lat-lng line. if (lat1 >= 0 && lat2 >= 0 && lat3 < linearLat) { return false; } // Southern hemisphere and point above lat-lng line. if (lat1 <= 0 && lat2 <= 0 && lat3 >= linearLat) { return true; } // North Pole. if (lat3 >= PI/2) { return true; } // Compare lat3 with latitude on the GC/Rhumb segment corresponding to lng3. // Compare through a strictly-increasing function (tan() or mercator()) as convenient. return geodesic ? tan(lat3) >= tanLatGC(lat1, lat2, lng2, lng3) : mercator(lat3) >= mercatorLatRhumb(lat1, lat2, lng2, lng3); } /** * Computes whether the given point lies inside the specified polygon. * The polygon is always cosidered closed, regardless of whether the last point equals * the first or not. * Inside is defined as not containing the South Pole -- the South Pole is always outside. * The polygon is formed of great circle segments if geodesic is true, and of rhumb * (loxodromic) segments otherwise. */ public static boolean containsLocation(LatLng point, List<LatLng> polygon, boolean geodesic) { final int size = polygon.size(); if (size == 0) { return false; } double lat3 = toRadians(point.latitude); double lng3 = toRadians(point.longitude); LatLng prev = polygon.get(size - 1); double lat1 = toRadians(prev.latitude); double lng1 = toRadians(prev.longitude); int nIntersect = 0; for (LatLng point2 : polygon) { double dLng3 = wrap(lng3 - lng1, -PI, PI); // Special case: point equal to vertex is inside. if (lat3 == lat1 && dLng3 == 0) { return true; } double lat2 = toRadians(point2.latitude); double lng2 = toRadians(point2.longitude); // Offset longitudes by -lng1. if (intersects(lat1, lat2, wrap(lng2 - lng1, -PI, PI), lat3, dLng3, geodesic)) { ++nIntersect; } lat1 = lat2; lng1 = lng2; } return (nIntersect & 1) != 0; } private static final double DEFAULT_TOLERANCE = 0.1; // meters. /** * Computes whether the given point lies on or near the edge of a polygon, within a specified * tolerance in meters. The polygon edge is composed of great circle segments if geodesic * is true, and of Rhumb segments otherwise. The polygon edge is implicitly closed -- the * closing segment between the first point and the last point is included. */ public static boolean isLocationOnEdge(LatLng point, List<LatLng> polygon, boolean geodesic, double tolerance) { return isLocationOnEdgeOrPath(point, polygon, true, geodesic, tolerance); } /** * Same as {@link #isLocationOnEdge(LatLng, List, boolean, double)} * with a default tolerance of 0.1 meters. */ public static boolean isLocationOnEdge(LatLng point, List<LatLng> polygon, boolean geodesic) { return isLocationOnEdge(point, polygon, geodesic, DEFAULT_TOLERANCE); } /** * Computes whether the given point lies on or near a polyline, within a specified * tolerance in meters. The polyline is composed of great circle segments if geodesic * is true, and of Rhumb segments otherwise. The polyline is not closed -- the closing * segment between the first point and the last point is not included. */ public static boolean isLocationOnPath(LatLng point, List<LatLng> polyline, boolean geodesic, double tolerance) { return isLocationOnEdgeOrPath(point, polyline, false, geodesic, tolerance); } /** * Same as {@link #isLocationOnPath(LatLng, List, boolean, double)} * * with a default tolerance of 0.1 meters. */ public static boolean isLocationOnPath(LatLng point, List<LatLng> polyline, boolean geodesic) { return isLocationOnPath(point, polyline, geodesic, DEFAULT_TOLERANCE); } private static boolean isLocationOnEdgeOrPath(LatLng point, List<LatLng> poly, boolean closed, boolean geodesic, double toleranceEarth) { int size = poly.size(); if (size == 0) { return false; } double tolerance = toleranceEarth / EARTH_RADIUS; double havTolerance = hav(tolerance); double lat3 = toRadians(point.latitude); double lng3 = toRadians(point.longitude); LatLng prev = poly.get(closed ? size - 1 : 0); double lat1 = toRadians(prev.latitude); double lng1 = toRadians(prev.longitude); if (geodesic) { for (LatLng point2 : poly) { double lat2 = toRadians(point2.latitude); double lng2 = toRadians(point2.longitude); if (isOnSegmentGC(lat1, lng1, lat2, lng2, lat3, lng3, havTolerance)) { return true; } lat1 = lat2; lng1 = lng2; } } else { // We project the points to mercator space, where the Rhumb segment is a straight line, // and compute the geodesic distance between point3 and the closest point on the // segment. This method is an approximation, because it uses "closest" in mercator // space which is not "closest" on the sphere -- but the error is small because // "tolerance" is small. double minAcceptable = lat3 - tolerance; double maxAcceptable = lat3 + tolerance; double y1 = mercator(lat1); double y3 = mercator(lat3); double[] xTry = new double[3]; for (LatLng point2 : poly) { double lat2 = toRadians(point2.latitude); double y2 = mercator(lat2); double lng2 = toRadians(point2.longitude); if (max(lat1, lat2) >= minAcceptable && min(lat1, lat2) <= maxAcceptable) { // We offset longitudes by -lng1; the implicit x1 is 0. double x2 = wrap(lng2 - lng1, -PI, PI); double x3Base = wrap(lng3 - lng1, -PI, PI); xTry[0] = x3Base; // Also explore wrapping of x3Base around the world in both directions. xTry[1] = x3Base + 2 * PI; xTry[2] = x3Base - 2 * PI; for (double x3 : xTry) { double dy = y2 - y1; double len2 = x2 * x2 + dy * dy; double t = len2 <= 0 ? 0 : clamp((x3 * x2 + (y3 - y1) * dy) / len2, 0, 1); double xClosest = t * x2; double yClosest = y1 + t * dy; double latClosest = inverseMercator(yClosest); double havDist = havDistance(lat3, latClosest, x3 - xClosest); if (havDist < havTolerance) { return true; } } } lat1 = lat2; lng1 = lng2; y1 = y2; } } return false; } /** * Returns sin(initial bearing from (lat1,lng1) to (lat3,lng3) minus initial bearing * from (lat1, lng1) to (lat2,lng2)). */ private static double sinDeltaBearing(double lat1, double lng1, double lat2, double lng2, double lat3, double lng3) { double sinLat1 = sin(lat1); double cosLat2 = cos(lat2); double cosLat3 = cos(lat3); double lat31 = lat3 - lat1; double lng31 = lng3 - lng1; double lat21 = lat2 - lat1; double lng21 = lng2 - lng1; double a = sin(lng31) * cosLat3; double c = sin(lng21) * cosLat2; double b = sin(lat31) + 2 * sinLat1 * cosLat3 * hav(lng31); double d = sin(lat21) + 2 * sinLat1 * cosLat2 * hav(lng21); double denom = (a * a + b * b) * (c * c + d * d); return denom <= 0 ? 1 : (a * d - b * c) / sqrt(denom); } private static boolean isOnSegmentGC(double lat1, double lng1, double lat2, double lng2, double lat3, double lng3, double havTolerance) { double havDist13 = havDistance(lat1, lat3, lng1 - lng3); if (havDist13 <= havTolerance) { return true; } double havDist23 = havDistance(lat2, lat3, lng2 - lng3); if (havDist23 <= havTolerance) { return true; } double sinBearing = sinDeltaBearing(lat1, lng1, lat2, lng2, lat3, lng3); double sinDist13 = sinFromHav(havDist13); double havCrossTrack = havFromSin(sinDist13 * sinBearing); if (havCrossTrack > havTolerance) { return false; } double havDist12 = havDistance(lat1, lat2, lng1 - lng2); double term = havDist12 + havCrossTrack * (1 - 2 * havDist12); if (havDist13 > term || havDist23 > term) { return false; } if (havDist12 < 0.74) { return true; } double cosCrossTrack = 1 - 2 * havCrossTrack; double havAlongTrack13 = (havDist13 - havCrossTrack) / cosCrossTrack; double havAlongTrack23 = (havDist23 - havCrossTrack) / cosCrossTrack; double sinSumAlongTrack = sinSumFromHav(havAlongTrack13, havAlongTrack23); return sinSumAlongTrack > 0; // Compare with half-circle == PI using sign of sin(). } /** * Decodes an encoded path string into a sequence of LatLngs. */ public static List<LatLng> decode(final String encodedPath) { int len = encodedPath.length(); // For speed we preallocate to an upper bound on the final length, then // truncate the array before returning. final List<LatLng> path = new ArrayList<LatLng>(); int index = 0; int lat = 0; int lng = 0; for (int pointIndex = 0; index < len; ++pointIndex) { int result = 1; int shift = 0; int b; do { b = encodedPath.charAt(index++) - 63 - 1; result += b << shift; shift += 5; } while (b >= 0x1f); lat += (result & 1) != 0 ? ~(result >> 1) : (result >> 1); result = 1; shift = 0; do { b = encodedPath.charAt(index++) - 63 - 1; result += b << shift; shift += 5; } while (b >= 0x1f); lng += (result & 1) != 0 ? ~(result >> 1) : (result >> 1); path.add(new LatLng(lat * 1e-5, lng * 1e-5)); } return path; } /** * Encodes a sequence of LatLngs into an encoded path string. */ public static String encode(final List<LatLng> path) { long lastLat = 0; long lastLng = 0; final StringBuffer result = new StringBuffer(); for (final LatLng point : path) { long lat = Math.round(point.latitude * 1e5); long lng = Math.round(point.longitude * 1e5); long dLat = lat - lastLat; long dLng = lng - lastLng; encode(dLat, result); encode(dLng, result); lastLat = lat; lastLng = lng; } return result.toString(); } private static void encode(long v, StringBuffer result) { v = v < 0 ? ~(v << 1) : v << 1; while (v >= 0x20) { result.append(Character.toChars((int) ((0x20 | (v & 0x1f)) + 63))); v >>= 5; } result.append(Character.toChars((int) (v + 63))); } }