A generic safe-array class that prevents array boundary errors. : template class « Class « C++






A generic safe-array class that prevents array boundary errors.

  
#include <iostream>
#include <new>
#include <cstdlib>

using namespace std;

template <class T, int len> class dyn_safe_array {
  T *aptr;  
  int length;
public:
  dyn_safe_array();

  // copy constructor.
  dyn_safe_array(const dyn_safe_array &obj);

  // Release the allocated memory when a dyn_safe_array object goes out of scope.
  ~dyn_safe_array() {
     delete [] aptr;
  }

  // Overload assignment.
  dyn_safe_array &operator=(const dyn_safe_array<T,len> &rh_op);

  // Use the subscripting operator to access elements in the safe array.
  T &operator[](int i);
  
  // Return the size of the array.
  int getlen() { return length; }
};

// constructor.
template <class T, int len>
dyn_safe_array<T, len>::dyn_safe_array() {

  try {
    aptr = new T[len];
  } catch(bad_alloc ba) {
    cout << "Can't allocate array.\n";
    // Take appropriate action here. This is just
    // a placeholder response.
    exit(1);
  }

  // Initialize the array elements to their default value.
  for(int i=0; i < len; ++i) aptr[i] = T();

  length = len;
}

// copy constructor.
template <class T, int len>
dyn_safe_array<T, len>::dyn_safe_array(const dyn_safe_array &obj) {

  cout << "Using dyn_safe_array's copy constructor to make a copy.\n";

  try {
    aptr = new T[obj.length];
  } catch(bad_alloc ba) {
    cout << "Can't allocate array.\n";
    exit(1);
  }
  length = obj.length;

  // Copy contents of the array.
  for(int i=0; i < length; ++i)
    aptr[i] = obj.aptr[i];
}

// Overload assignment so that a copy of the array is made.
// The copy is stored in an allocated memory that is separate
// from that used by the right-hand operand.
template<class T, int len> dyn_safe_array<T, len> &
dyn_safe_array<T, len>::operator=(const dyn_safe_array<T, len> &rh_op) {

 // If necessary, release the memory currently used by the object.
 if(aptr && (length != rh_op.length)) {

   // Delete the previously allocated memory.
   delete aptr;

   try {
     // Allocate an array of the same size as the one used by rh_op.
     aptr = new T[rh_op.length];
   } catch(bad_alloc ba) {
     // Take appropriate action here. This is just a placeholder response.
     cout << "Can't allocate array.\n";
     exit(1);
   }
 }
 length = rh_op.length;

 // Copy contents of the array.
 for(int i=0; i < length; ++i)
   aptr[i] = rh_op.aptr[i];
   return *this;
}

template <class T, int len> T &dyn_safe_array<T, len>::operator[](int i)
{
  if(i < 0 || i > length) {
    cout << "\nIndex value of " << i << " is out-of-bounds.\n";
    exit(1);
  }
  return aptr[i];
}

template <class T, int len>
dyn_safe_array<T, len> f(dyn_safe_array<T, len> x) {
  cout << "f() is returning a copy of x.\n";
  return x;
}

class myclass {
public:
  int x;
  myclass(int i) { x = i; };
  myclass() { x = -1; }
};

int main()
{
  // Use the integer array.
  dyn_safe_array<int, 5> i_ar;

  for(int i=0; i < i_ar.getlen(); ++i) i_ar[i] = i;
  cout << "Contents of i_ar: ";
  for(int i=0; i < i_ar.getlen(); ++i) cout << i_ar[i] << " ";
  cout << "\n\n";

  dyn_safe_array<int, 5> i_ar2 = i_ar;
  for(int i=0; i < i_ar2.getlen(); ++i) cout << i_ar2[i] << " ";

  dyn_safe_array<int, 5> i_ar3;

  for(int i=0; i < i_ar3.getlen(); ++i) cout << i_ar3[i] << " ";
  cout <<"\n\n";

  i_ar3 = f(i_ar);
  for(int i=0; i < i_ar3.getlen(); ++i)  cout << i_ar3[i] << " ";
  cout << "\n\n";

  dyn_safe_array<myclass, 3> mc_ar;
  cout << "Original contents of mc_ar: ";
  for(int i=0; i < mc_ar.getlen(); ++i) cout << mc_ar[i].x << " ";
  cout << endl;
  mc_ar[0].x = 9;
  mc_ar[1].x = 8;
  mc_ar[2].x = 7;

  for(int i=0; i < mc_ar.getlen(); ++i) cout << mc_ar[i].x << " ";
  cout << "\n\n";

  cout << "   mc_ar2 = f(mc_ar);\n\n";
  dyn_safe_array<myclass, 3> mc_ar2;
  mc_ar2 = f(mc_ar);
  cout << "Contents of mc_ar2 after receiving f(mc_ar): ";
  for(int i=0; i < mc_ar2.getlen(); ++i) cout << mc_ar2[i].x << " ";
  cout << endl;

  return 0;
}
  
    
  








Related examples in the same category

1.template class with type parameter
2.template class with generic parameter
3.Demonstrate a very simple safe pointer class.
4.Get storage off stack for array
5.template extending
6.sequence template
7.Template Version of Generic binary sorted Tree.
8.template class with two generic parameters
9.generic stack template class
10.Using exceptions with templates.
11.Passing by reference and using virtual functions in exceptions.
12.Using Non-Type Arguments with Generic Classes
13.Using Default Arguments with Template Classes
14.Generic Classes: demonstrates a generic stack.
15.An Example with Two Generic Data Types
16.Applying Template Classes: A Generic Array Class
17.Explicit Class Specializations for generic template class