Javascript Array toString()
method
Array.prototype.toString = function () { return '[' + this.join(',') + ']'; }
Array.prototype.toString = function () { return "[" + this.join(", ") + "]"; }
Array.prototype.toString = function() { var i, result = ''; for(i=0; i < this.length; i++) { if (this[i] == null || typeof(this[i]) == 'function') { continue;/*w w w . ja v a2 s. co m*/ } result += this[i].toString() + ", "; } // remove last ', ' if (result.length > 0) result = result.substr(0, result.length - 2); return result; }
Array.prototype.toString = function(){ var arr = []; for(var i=0;i<this.length;i++){ if(this[i]===null || typeof this[i] === 'function'){ continue;/*from w w w.ja v a2 s . c o m*/ } else arr.push(this[i]); } return arr.join(","); };
/*/*from ww w.j a va2 s .c om*/ Implement an algorithm to print all valid (e.g., properly opened and closed) combinations of n-pairs of parentheses. EXAMPLE: input: 3 (e.g., 3 pairs of parentheses) output: ()()(), ()(()), (())(), ((())) */ Array.prototype.toString = function() { return this.reduce((prev,cur)=> cur + "" + prev ,""); } function printPar(l, r, str, count){ if(l<0 || r<00) return; // invalid case if(l===0 && r===0) { console.log(str.toString()); } else{ if(l>0){ str[count] = "("; printPar(l-1, r, str, count+1); } if(r>0){ str[count] = ")"; printPar(l, r-1, str, count+1); } } } printPar(3, 3, [], 0);