Java Algorithms Huffman code
public class Main { public static void main(String[] args) { // Count frequency int[] counts = getCharacterFrequency("this is a test test test"); System.out.printf("%-15s%-15s%-15s%-15s\n", "ASCII Code", "Character", "Frequency", "Code"); Tree tree = getHuffmanTree(counts); // Create a Huffman tree String[] codes = getCode(tree.root); // Get codes for (int i = 0; i < codes.length; i++) { if (counts[i] != 0) {// (char)i is not in text if counts[i] is 0 System.out.printf("%-15d%-15s%-15d%-15s\n", i, (char) i + "", counts[i], codes[i]); }/*from ww w . ja va2 s . co m*/ } } /** * Get Huffman codes for the characters This method is called once after a * Huffman tree is built */ public static String[] getCode(Node root) { if (root == null) return null; String[] codes = new String[2 * 128]; assignCode(root, codes); return codes; } /* Recursively get codes to the leaf node */ private static void assignCode(Node root, String[] codes) { if (root.left != null) { root.left.code = root.code + "0"; assignCode(root.left, codes); root.right.code = root.code + "1"; assignCode(root.right, codes); } else { codes[(int) root.element] = root.code; } } /** Get a Huffman tree from the codes */ public static Tree getHuffmanTree(int[] counts) { // Create a heap to hold trees Heap<Tree> heap = new Heap<>(); // Defined in Listing 24.10 for (int i = 0; i < counts.length; i++) { if (counts[i] > 0) heap.add(new Tree(counts[i], (char) i)); // A leaf node tree } while (heap.getSize() > 1) { Tree t1 = heap.remove(); // Remove the smallest weight tree Tree t2 = heap.remove(); // Remove the next smallest weight heap.add(new Tree(t1, t2)); // Combine two trees } return heap.remove(); // The final tree } public static int[] getCharacterFrequency(String text) { int[] counts = new int[256]; // 256 ASCII characters for (int i = 0; i < text.length(); i++) counts[(int) text.charAt(i)]++; // Count the character in text return counts; } } /** Huffman coding tree */ class Tree implements Comparable<Tree> { Node root; // The root of the tree /** Create a tree with two subtrees */ public Tree(Tree t1, Tree t2) { root = new Node(); root.left = t1.root; root.right = t2.root; root.weight = t1.root.weight + t2.root.weight; } /** Create a tree containing a leaf node */ public Tree(int weight, char element) { root = new Node(weight, element); } @Override /** Compare trees based on their weights */ public int compareTo(Tree t) { if (root.weight < t.root.weight) // Purposely reverse the order return 1; else if (root.weight == t.root.weight) return 0; else return -1; } } class Node { char element; // Stores the character for a leaf node int weight; // weight of the subtree rooted at this node Node left; // Reference to the left subtree Node right; // Reference to the right subtree String code = ""; // The code of this node from the root public Node() { } public Node(int weight, char element) { this.weight = weight; this.element = element; } } class Heap<E extends Comparable> { private java.util.ArrayList<E> list = new java.util.ArrayList<E>(); public Heap() { } public Heap(E[] objects) { for (int i = 0; i < objects.length; i++) add(objects[i]); } public void add(E newObject) { list.add(newObject); // Append to the heap int currentIndex = list.size() - 1; // The index of the last node while (currentIndex > 0) { int parentIndex = (currentIndex - 1) / 2; // Swap if the current object is greater than its parent if (list.get(currentIndex).compareTo(list.get(parentIndex)) > 0) { E temp = list.get(currentIndex); list.set(currentIndex, list.get(parentIndex)); list.set(parentIndex, temp); } else break; // the tree is a heap now currentIndex = parentIndex; } } public E remove() { if (list.size() == 0) return null; E removedObject = list.get(0); list.set(0, list.get(list.size() - 1)); list.remove(list.size() - 1); int currentIndex = 0; while (currentIndex < list.size()) { int leftChildIndex = 2 * currentIndex + 1; int rightChildIndex = 2 * currentIndex + 2; // Find the maximum between two children if (leftChildIndex >= list.size()) break; // The tree is a heap int maxIndex = leftChildIndex; if (rightChildIndex < list.size()) { if (list.get(maxIndex).compareTo(list.get(rightChildIndex)) < 0) { maxIndex = rightChildIndex; } } // Swap if the current node is less than the maximum if (list.get(currentIndex).compareTo(list.get(maxIndex)) < 0) { E temp = list.get(maxIndex); list.set(maxIndex, list.get(currentIndex)); list.set(currentIndex, temp); currentIndex = maxIndex; } else break; // The tree is a heap } return removedObject; } public int getSize() { return list.size(); } }