SHA-256 hash function reference implementation. - Node.js Security

Node.js examples for Security:SHA

Description

SHA-256 hash function reference implementation.

Demo Code

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/*  SHA-256 implementation in JavaScript                (c) Chris Veness 2002-2014 / MIT Licence  */
/*                                                                                                */
/*  - see http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html                              */
/*        http://csrc.nist.gov/groups/ST/toolkit/examples.html                                    */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

/* jshint node:true *//* global define, escape, unescape */
'use strict';/*from   w ww  .  j av a  2s  . c  o  m*/


/**
 * SHA-256 hash function reference implementation.
 *
 * @namespace
 */
var Sha256 = {};


/**
 * Generates SHA-256 hash of string.
 *
 * @param   {string} msg - String to be hashed
 * @returns {string} Hash of msg as hex character string
 */
Sha256.hash = function(msg) {
    // convert string to UTF-8, as SHA only deals with byte-streams
    msg = msg.toString(16);
    console.log('msg ' + msg);
    msg = msg.utf8Encode();
    
    // constants [?4.2.2]
    var K = [
        0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
        0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
        0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
        0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
        0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
        0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
        0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
        0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ];
    // initial hash value [?5.3.1]
    var H = [
        0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ];

    // PREPROCESSING 
 
    msg += String.fromCharCode(0x80);  // add trailing '1' bit (+ 0's padding) to string [?5.1.1]

    // convert string msg into 512-bit/16-integer blocks arrays of ints [?5.2.1]
    var l = msg.length/4 + 2; // length (in 32-bit integers) of msg + ?1? + appended length
    var N = Math.ceil(l/16);  // number of 16-integer-blocks required to hold 'l' ints
    var M = new Array(N);

    for (var i=0; i<N; i++) {
        M[i] = new Array(16);
        for (var j=0; j<16; j++) {  // encode 4 chars per integer, big-endian encoding
            M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) | 
                      (msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3));
        } // note running off the end of msg is ok 'cos bitwise ops on NaN return 0
    }
    // add length (in bits) into final pair of 32-bit integers (big-endian) [?5.1.1]
    // note: most significant word would be (len-1)*8 >>> 32, but since JS converts
    // bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
    M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14]);
    M[N-1][15] = ((msg.length-1)*8) & 0xffffffff;


    // HASH COMPUTATION [?6.1.2]

    var W = new Array(64); var a, b, c, d, e, f, g, h;
    for (var i=0; i<N; i++) {

        // 1 - prepare message schedule 'W'
        for (var t=0;  t<16; t++) W[t] = M[i][t];
        for (var t=16; t<64; t++) W[t] = (Sha256.s1(W[t-2]) + W[t-7] + Sha256.s0(W[t-15]) + W[t-16]) & 0xffffffff;

        // 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value
        a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; f = H[5]; g = H[6]; h = H[7];

        // 3 - main loop (note 'addition modulo 2^32')
        for (var t=0; t<64; t++) {
            var T1 = h + Sha256.S1(e) + Sha256.Ch(e, f, g) + K[t] + W[t];
            var T2 =     Sha256.S0(a) + Sha256.Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = (d + T1) & 0xffffffff;
            d = c;
            c = b;
            b = a;
            a = (T1 + T2) & 0xffffffff;
        }
         // 4 - compute the new intermediate hash value (note 'addition modulo 2^32')
        H[0] = (H[0]+a) & 0xffffffff;
        H[1] = (H[1]+b) & 0xffffffff; 
        H[2] = (H[2]+c) & 0xffffffff; 
        H[3] = (H[3]+d) & 0xffffffff; 
        H[4] = (H[4]+e) & 0xffffffff;
        H[5] = (H[5]+f) & 0xffffffff;
        H[6] = (H[6]+g) & 0xffffffff; 
        H[7] = (H[7]+h) & 0xffffffff; 
    }

    return Sha256.toHexStr(H[0]) + Sha256.toHexStr(H[1]) + Sha256.toHexStr(H[2]) + Sha256.toHexStr(H[3]) + 
           Sha256.toHexStr(H[4]) + Sha256.toHexStr(H[5]) + Sha256.toHexStr(H[6]) + Sha256.toHexStr(H[7]);
};


/**
 * Rotates right (circular right shift) value x by n positions [?3.2.4].
 * @private
 */
Sha256.ROTR = function(n, x) {
    return (x >>> n) | (x << (32-n));
};

/**
 * Logical functions [?4.1.2].
 * @private
 */
Sha256.S0  = function(x) { return Sha256.ROTR(2,  x) ^ Sha256.ROTR(13, x) ^ Sha256.ROTR(22, x); };
Sha256.S1  = function(x) { return Sha256.ROTR(6,  x) ^ Sha256.ROTR(11, x) ^ Sha256.ROTR(25, x); };
Sha256.s0  = function(x) { return Sha256.ROTR(7,  x) ^ Sha256.ROTR(18, x) ^ (x>>>3);  };
Sha256.s1  = function(x) { return Sha256.ROTR(17, x) ^ Sha256.ROTR(19, x) ^ (x>>>10); };
Sha256.Ch  = function(x, y, z) { return (x & y) ^ (~x & z); };
Sha256.Maj = function(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); };


/**
 * Hexadecimal representation of a number.
 * @private
 */
Sha256.toHexStr = function(n) {
    // note can't use toString(16) as it is implementation-dependant,
    // and in IE returns signed numbers when used on full words
    var s="", v;
    for (var i=7; i>=0; i--) { v = (n>>>(i*4)) & 0xf; s += v.toString(16); }
    return s;
};


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */


/** Extend String object with method to encode multi-byte string to utf8
 *  - monsur.hossa.in/2012/07/20/utf-8-in-javascript.html */
if (typeof String.prototype.utf8Encode == 'undefined') {
    String.prototype.utf8Encode = function() {
        return unescape( encodeURIComponent( this ) );
    };
}

/** Extend String object with method to decode utf8 string to multi-byte */
if (typeof String.prototype.utf8Decode == 'undefined') {
    String.prototype.utf8Decode = function() {
        try {
            return decodeURIComponent( escape( this ) );
        } catch (e) {
            return this; // invalid UTF-8? return as-is
        }
    };
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
if (typeof module != 'undefined' && module.exports) module.exports = Sha256; // CommonJs export
if (typeof define == 'function' && define.amd) define([], function() { return Sha256; }); // AMD

Related Tutorials